2705/205
BUILDING CONSTRUCTION II
AND DRAWING II
June/July 2018
Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN BUILDING TECHNOLOGY MODULE II

BUILDING CONSTRUCTION II AND DRAWING II.

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Drawing instruments;

Drawing papers size A2.

This paper consists of EIGHT questions in TWO sections: A and B.

Answer FIVE questions choosing FOUR questions from section A and ONE question from

Questions in section A carry 15 marks each while those in section B carry 40 marks each. Candidates should answer the questions in English.

This paper consists of 6 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2018 The Kenya National Examinations Council

Turn over

SECTION A: BUILDING CONSTRUCTION II

Answer FOUR questions from this section.

1.	(a)	State three requirements to be considered in the selection of the type of upper floor construction. (3 marks)		
	(b)	With an aid of a sketch, briefly describe the following form of construction of suspended floors:			
		(i) solid concrete;			
		(ii) timber floated floor;			
		(iii) precast floor slab			
		(12 marks)		
00)	(a)	State four functional requirements of a roof. (4 marks)		
	(b)				
		structures:	12		
		(i) closed couple roof;			
		(ii) trussed roof ×			
		(11 marks	18		
Ø/	(a)	Briefly describe three factors influencing the choice of roof coverings. (9 marks)		
	(b)	State three advantages and three disadvantages of galvanised steel roof covering. (6 marks	1.6		
A	(a)	Define the following members of a roof structure:			
		(i) common rafter;			
		(ii) purlin;			
		(iii) ceiling joist;			
		(iv) dragon tie.			
		(4 marks)-		
	(65)	State two building regulations for a roof structure. (2 marks)	10		
	(6)	Sketch a well labelled details of the following timber pitched roofs with interlocking concrete tiles:			
		(i) open eave; /			
		(ii) closed cave; V			
		(iii) flush eave.			
		(9 marks)			

2

2705/205

June/July 2018

- 5. (a) Define the following:
 - (i) conduit;
 - (ii) duct.

(2 marks)

- (b) Outline two reasons for creating openings in domestic upper floor. (8 marks)
- (c) With an aid of a sketch, show the procedure of fixing pipes through an monolithic upper floor. (5 marks)
- State four factors which influence the choice of materials for the construction of 6. (a) + And monthly partensed . (4 marks) framed structures.
 - Figure 1 shows a line diagram of a steel framed building, 7.5 m x 45 m long. (b)

Fig. 1

- (i) By using a line diagram, sketch a suitable method of bracing the roof against the wind forces. (3 marks)
- (ii) Sketch details 'A' and 'B' to illustrate the construction of the roof in figure I above. (8 marks)

Answer ONE question from this section.

- Figure 2 shows a sketch of a cantilever slab. Using the information given below draw to a scale of 1:20:
 - (i) the longitudinal section X-X
 - (ii) plan
 - (iii) cross-section Y-Y, 1200 mm from bearing.

(40 marks)

Information:

Clear span	-	3000 mm
Overall depth of fixed end		580 mm
Overall depth at free end		180 mm
Width of cantilever beam	-	300 mm

Reinforcement

Main steel

 5 No, 16 mm diameter with 3 bards curtailed at 1500 mm from support

 Anchor bars

 8 mm diameter stirrups
 6 300 c/c

 Thickness of bearing wall
 400 mm

 (a) Figure 3 shows part elevation of a precast concrete portal frame. To a scale of 1:10, draw a typical method of joining the pitched spanning member at detail 1. (8 marks)

(b) Figure 4 shows a plan of a guest wing built on a made up ground.

All walls are supported on a raft foundation. To a scale of 1:5 draw section A-A showing the following:

- (i) 300 mm thick concrete foundation
- (ii) 12 mm diameter reinforcement bars
- (iii) Sand filling 300 mm thick
- (iv) 100 mm concrete floating slab.

Fig. 4

5

(c) Figure 5 shows the elevation of a flush door.

To a scale 1:25, draw section X-X showing the following features:

- (i) square jamb and reveal;
- (ii) splayed jamb and reveal;
- (iii) square jamb without reveal.

(12 marks)

THIS IS THE LAST PRINTED PAGE.