2305/301

2308/301

2306/301

2309/301

2307/201

MATHEMATICS

Oct./Nov. 2017

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN BUILDING DIPLOMA IN QUANTITY SURVEYING DIPLOMA IN CIVIL ENGINEERING DIPLOMA IN HIGHWAY ENGINEERING DIPLOMA IN ARCHITECTURE

MATHEMATICS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Mathematical table / calculator;

Drawing instruments;

Answer booklet.

This paper consists of EIGHT questions.

Answer FIVE questions in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 4 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

- (a) Prove the identities:
 - (i) $\frac{1 \sin \theta}{1 + \sin \theta} = \frac{1}{(\sec \theta + \tan \theta)^2}$
 - (ii) $\tan 3A = \frac{3 \tan A \tan^3 A}{1 3 \tan^2 A}$

(9 marks)

Prove that $\sin \theta + \sin (\theta + 120^\circ) + \sin (\theta + 240^\circ) = 0$

(4 marks)

- (c) Express $12 \cos \theta + 5 \sin \theta$ in the form R $\cos (\theta \alpha)$, where R > 0 and $0^* \le \alpha \le 90^*$.
 - (ii) Hence solve the equation $12 \cos \theta + 5 \sin \theta = 6.5$, for values of θ between 0° and 360° inclusive.

(7 marks)

- 2. (a) Write down the middle term in the binomial expansion of $(x + 2y)^{12}$, and determine its value when $x = \frac{1}{2}$ and $y = \frac{2}{3}$. (7 marks)
 - (b) Determine the first four terms in the binomial expansion of $\left(1 \frac{2}{3}x\right)^{\frac{1}{3}}$, and state the values of which the expansion is valid. (4 marks)
 - (c) Use the binomial theorem to show that, for very small value of x, $\sqrt{\left(\frac{1+2x}{1-2x}\right)} = 1 + 2x + 2x^3 + 4x^3$ approximately.
 - (ii) By setting $x = \frac{1}{100}$ in (i) above, determine the approximate value of $\sqrt{51}$, correct to four decimal places.

(9 marks)

(a) Given the matrices $A = \begin{bmatrix} -1 & 1 & -1 \\ 1 & 2 & -1 \\ 1 & 0 & 2 \end{bmatrix}$,

and $B = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & 1 \\ 0 & 1 & -1 \end{bmatrix}$, determine (AB)-1.

(10 marks)

2305/301 2308/301 2306/301 2309/301 2307/301

Oct/Nov. 2017

(b) Three forces F₁, F₂ and F₃ in newtons, necessary for the stability of a structure satisfy the simultaneous equations

$$F_1 - F_2 + F_3 = 5$$

 $F_1 - 2F_2 + F_3 = 2$
 $F_1 + F_2 - F_3 = -1$

Use Cramer's rule to solve the equations.

(10 marks)

(a) Show that the general solution of the differential equation (x² + y²) dx - xydy = 0 may be expressed in the form x = cy, where c is an arbitrary constant.

(7 marks)

(b) Solve the differential equation

$$6\frac{d^3y}{dx^2} + \frac{dy}{dx} - 2y = e^{-ix}$$
, that when $x = 0$, $y = 0$ and $\frac{dy}{dx} = -1$

(13 marks)

5. (a) Find $\frac{dy}{dx}$ from first principles, given that $y = \frac{3}{x^2}$.

(6 marks)

(b) Use implicit differentiation to determine the equation of the tangent to the curve $x^2 - 2y^2 + 3xy - 2x + 6y = 4$, at the point (0,2).

(6 marks)

(c) A curve has the parametric equations $x = \theta - \cos \theta$, $y = \sin \theta$. Determine the radius of curvature at $\theta = \pi$.

(8 marks)

6. (a) (i) Evaluate the integral:

$$\int_0^1 \frac{\tan^{-1} x}{1+x^2} dx$$

(ii) Show that
$$\int_0^1 \frac{dx}{(x+1)(x^2+x+1)} = \ln(\frac{2}{\sqrt{3}}) + \frac{\pi}{6\sqrt{3}}$$

(13 marks)

(b) Use integration to determine the length of the curve $y = \frac{1}{3}x^{\frac{1}{2}}$ between the points x = 1 and x = 2.

Correct two decimal places.

(7 marks)

2305/301 2308/301 2306/301 2309/301 2307/301

Oct JNov. 2017

(a) \checkmark Given the complex numbers $z_1 = 2 - j$, $z_2 = 1 - 2j$ and $z_3 = 1 + j$, express $z = z_1 + \frac{z_1 + z_2}{z_1 z_1}$ in polar form. $Z = 2 - i + \frac{2 - j + 1 + j}{(2 - j)(1 + j)}$

(8 marks)

(b) K Find all the roots of the equation

$$z^3 + 3z^2 + 4z + 2 = 0$$

(6 marks)

(c) Use De Moivre's theorem to prove that

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

(6 marks)

Table 1 shows data obtained from an experiment to determine the relationship between the force (x) and extension (y) on a cable.

Table 1

Force N(x)	10	20	30	40	50	60	70
Extension mm (y)	0.12	0.30	0.51	0.75	1.10	1.35	1.60

Calculate Karl Pearson's correlation coefficient.

(10 marks)

(b) A continuous random variable X has a probability density function defined by

$$f(x) = \begin{cases} k, & 0 \le x \le 1 \\ k(4x - 2), & 1 \le x \le 2 \\ 0, & elsewhere \end{cases}$$

Determine the:

- (i) value of the constant k,
- (ii) mean,
- (iii) $P(x \ge 1.5)$

(10 marks)

50

THIS IS THE LAST PRINTED PAGE.

THE THE P

2305/301 2306/301

2308/301 2309/301

2307/301 Oct/Nov. 2017 4

2125-5