2305/303 2307/303 2308/303 STRUCTURES Oct./Nov. 2009 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN BUILDING DIPLOMA IN CIVIL ENGINEERING DIPLOMA IN HIGHWAY ENGINEERING

STRUCTURES

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:
Answer booklet
Mathematical tables/Pocket calculator
Drawing instruments.

Answer any FIVE of the EIGHT questions in this paper, ALL questions carry equal marks. Maximum marks for each part of a question are as shown.

Relevant design tables are provided.

This paper consists of 11 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2009 The Kenya National Examinations Council

Turn over

 (a) Using the method of sections, determine the magnitude and nature of forces in the members of the frame shown in figure 1. (7 marks)

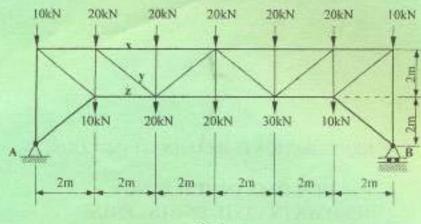
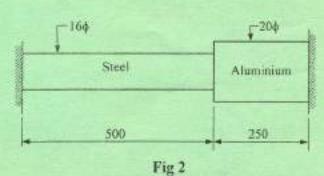


Fig I

- (b) A composite bar is made up of two materials as shown in figure 2. If the bars are stress free at 40°C, determine the stresses developed in the bars when temperature drops to 20°C, when;
 - (i) the supports are unyielding
 - (ii) the supports come nearer to each other by 0.12mm.

Given:


(13 marks)

Aluminium: Ea = 70kN/mm²

 $\alpha_{a} = 23.4 \times 10^{6} \text{ per }^{\circ}\text{C}$

Steel: Es = 210kN/mm²

 $\alpha_s = 11.7 \times 10^6 \text{ per }^0\text{C}$

Note: Dimensions in mm

Figure 3 shows a beam ABCDE build in at A and supported on rollers at B, C and D, with DE being an overhung. The values of moment of inertia of the section over each of these lengths are 3I, 2I, I and I respectively, the loading being as shown.
 Analyse the beam using the three moments theorem, and hence draw the bending moment diagram, indicating all the critical values.

(20 marks)

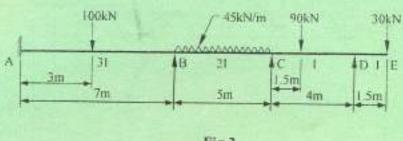
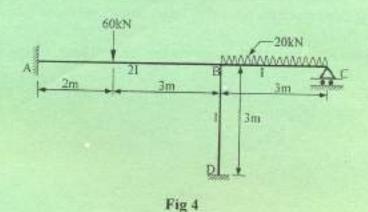



Fig 3

 Using the method of moment distribution, analyse the frame shown in figure 4 and plot the bending moment diagram indicating all the critical values. (20 marks)

A horizontal simply supported girder 14m long is of uniform section, and carries two point loads as shown in figure 5. Using Macaulay's method,

determine the deflection under each point load. Take $I = 1.6 \times 10^9 \text{mm}^4$, and $E = 210 \text{kN/mm}^2$.

(9 marks)

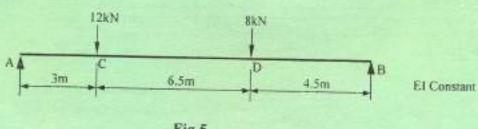
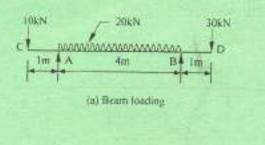



Fig 5

(a)

(b) Figure 6 shows a loaded simply supported beam and its cross-section. Draw the shear stress distribution diagram indicating the critical values for the maximum shear force.

(II marks)

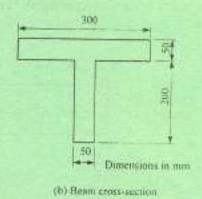
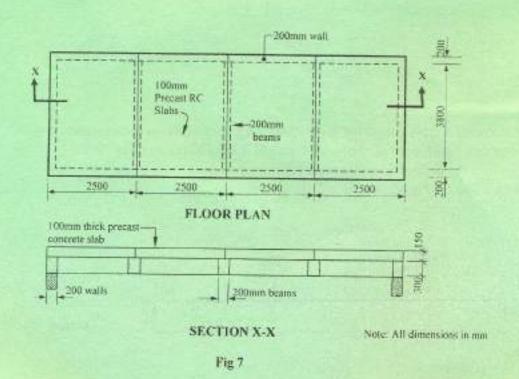



Fig 6

- Figure 7 shows the plan and section through a precast concrete floor. Using the load factor method, design the bean given the following information:
 - Concrete mix 1:24
 - Beams are 200mm wide and simply supported on 200mm load bearing walls.
 - live load = 3 kN/m2
 - Finishes = 1kN/m²
 - Density of concrete = 2400kg/m3
 - $Pst = 230N/mm^2$.

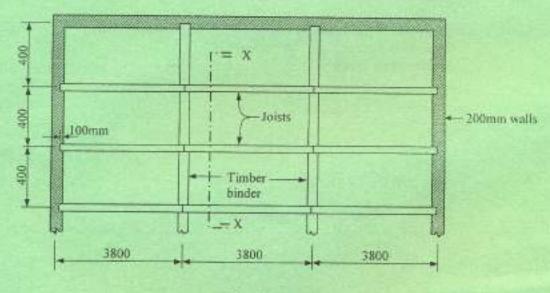
(20 marks)

2305, 2307, 2308/303

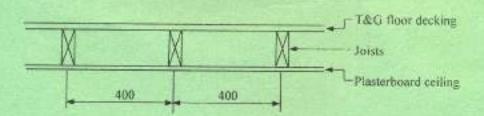
- 6. (a) A square column of size 300 X 300mm is to transmit an axial load of 700kN to its base. The column height centre to centre of floors is 3m, and is properly restrained at both ends in position and direction. Design the column and its base given the following information:
 - concrete mix 1:11/2:3
 - Pst = 140N/mm²
 - Pcc = 6.5N/mm2
 - $Psc = 125N/mm^2$
 - m = 15
 - bearing capacity of soil = 250kN/m2
 - Assume any other relevant information.

(18 marks)

(b) Detail the reinforcement for the column and its base as designed in (a).


(2 marks)

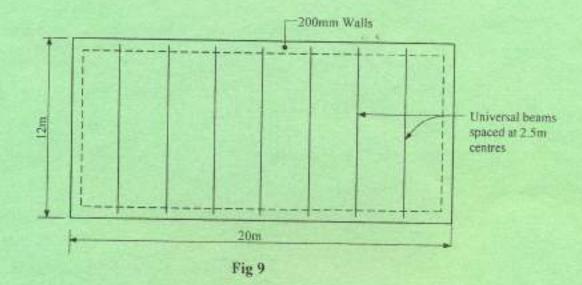
- (a) (i) Differentiate between 'basic stress' and 'green stress'-as applied to timber.
 - (ii) Explain each of the following in stress grading of timber:
 - visual stress grading
 - machine stress grading.


(6 marks)

- (b) Figure 8 shows the plan and section through a timber floor for a domestic dwelling. Design the timber joists for strength class SC2 given the following information:
 - Joists are spaced at 400mm centres
 - Joists have an effective span of 3.8m
 - Self weight of T & G boards = 0.1kN/m2
 - Self weight of plasterboard ceiling = 0.2 kN/m2
 - Imposed loading on floor = 1.5kN/m2
 - Depth of joist limited to 200mm
 - Density of timber of SC2 class = 540kg/m¹
 - Modification factor K3 is as given in Table 1
 - Modification factor for load sharing systems, K8 = 1.1
 - Depth factor, $K7 = \left(\frac{300}{h}\right)^{\alpha n}$, where h = depth of beam
 - Maximum depth to breath ratio is as given in Table 2
 - Grade stresses and modulus of elasticity for SC2 class is as given in Table 3.

(14 marks)

PLAN


Note: All dimensions in mm

SECTION X-X

Fig 8

- 8. (a) Figure 9 shows the roof plan of a proposed hall. The roof consists of 125mm thick reinforced concrete slab support on universal beams. Check the adequacy of 533 X 165mm X 73 kg/m universal beams in grade 43 steel for the roof given the following information:
 - spacing of universal beams = 2.5m centres
 - roof finish together with waterproof layer of thickness 75mm is of average specific weight 20kN/m³
 - Live load on roof finish = 0.75kN/m2.
 - Density of reinforced concrete = 2400kg/m³.
 - E = 210kN/mm²
 - $f_b = 165 \text{N/mm}^2$
 - $Pq = 100 N/mm^2$
 - Assume any other relevant information.

(12 marks)

(b) Figure 10 shows a proposed bolted connection. Determine the safe load P. Take $f_i = 95 \text{N/mm}^2$, $f_i = 155 \text{N/mm}^2$ and $f_{br} = 300 \text{N/mm}^2$

(8 marks)

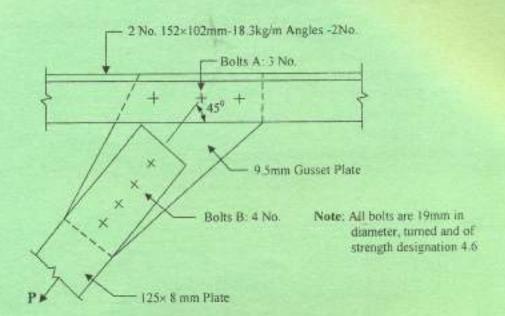


Fig 10

Duration of loading	Value of K
Long term	
(e.g. dead + permanent imposed)	1.00
Medium term	
(e.g. dead +snow, dead + temporary imposed)	1.25
Short term	
(e.g. dead + imposed + wind, dead + imposed + snow + wind)	1.50
Very short term	
(e.g. dead + imposed + wind)	1.75

Table 2: Depth factor, K7 (BS 5268)

- 1. K, =1.17 for solid heams having a depth < 72mm
- 2. $K_2 = (300/h)^{0.11}$ for solid beams with 72mm < h < 300mm
- 3. K₂ = $0.81(h^2 + 92300)/(h^3 + 56800)$ for solid beams with h < 300mm

Table 3: Grade stresses, modulus of elasticity and density for strength class SC2 for the dry exposure condition (Table 9, BS 5268)

Strength Class	Bending parallel	Tension parallel	Compression parallel	Compe	ession sdicular	Shear parallel	Modulus v	Approximate Density		
C1000	to grain (Nmm ²)	to grain		to	grain*) (Nmm ⁻²)	to grain (Nmm ²)	(Emm) (Noint)	(Enomination)	(kgm²)	
SCI	2.8	2.2	3.5	2.1	1.2	0.46	6800	4500	540	
SC2	4.1	2.5	5.3	2.1	1.6	0.66	8000	5000	540	
SC3	5.3	3.2	6.8	2.2	1.7	0.67	8800	5800	540	
SC4	7.5	4.5	7.9	2.4	1.9	0.71	9900	6600	590	
SC5	10.0	6.0	8.7	2.8	2.4	1.00	10700	7100	590/760	
SC6	12.5	7.5	12.5	3.8	2.8	1.50	14100	11800	840	
SC7	15.0	9.0	14.5	4.4	3.3	1.75	16200	13600	960	
SC8	17.5	10.5	16.5	5.2	3.9	2.00	18700	15600	1080	
SC9	20.5	12.3	19.5	6.1	4.6	2.25	21600	18000	1200	

When the specification specifically prohibits wane at bearing areas, the higher values of compression perpendicular to the grain stress may be used; otherwise the lower values apply.

Table 4: Reinforcement-bar areas (mm²) per metre width for various bar spacings

Bar	Bar s	Bar spacing (mm)												
Diameter (mm)	75	100	125	150	175	200	225	250	275	300				
6	377	283	226	189	162	142	126	113	103	94				
8	671	503	402	335	287	252	223	201	183	168				
10	1047	785	628	523	449	393	349	314	286	262				
12	1508	1131	905	754	646	566	503	452	411	377				
16	2681	2011	1608	1340	1149	1005	894	804	731	670				
20	4189	3142	2513	2094	1795	1571	1396	1257	1142	1047				
25	6545	4909	3927	3272	2805	2454	2182	1963	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN COLUMN	The second section				
32		8042	6434	5362	4596	4021	3574	3217	1785	1636				
40	+	-	10050	8378	7181	6283	5585	5027	2925 4570	2681				

Areas of group of reinforcement bars (mm2)

Bar	Numl	Number of bars												
Diameter (mm)	1	2	3	4	5	6	7	8	9	10				
6	28	57	85	113	141	170	198	226	254	283				
8	50	101	151	201	251	302	352	402	452	503				
10	79	157	236	314	393	471	550	628	707	785				
12	113	226	339	452	565	679	792	905	1017	1131				
16	201	402	603	804	1005	1206	1407	1608	1809	2011				
20	314	628	942	1257	1571	1885	2199	2513	2827	3142				
25	491	982	1473	1963	2454	2945	3436	3927	4418	4909				
32	804	1608	2412	3216	4021	4825	5629	6433	7237	8042				
40	1256	2513	3769	5026	6283	7539	8796	10050	11310	12570				

DIMENSIONS AND PROPERTIES

UNIVERSAL BEAMS

r.
7

	Rode	01		10000	2283		1. M. C. W. L.		2000	882 173 183 183 183 183 183 183 183 183 183 18	1200	22.0	5285 5285 5088 5088 5088 5088 5088 5088	23.2	202 202 202 202 202 202 202 202 202 202
Madulae	Ann	4-4	OF RE	2021	819.13 605.6	STAN MEDICAL	CE 101 L	DONNE		3898 321.1 279.1 233.8	1600	963.2	302.8 201.5 239.2 211.5 211.5	124.1	228 9 2042 1826 1624 138.8
Sheek	Asir	1-1	Cred	15586	2.00	1200	55.024 57.74	4802 4304 3873 472	975 1097 1007 1007	3620 3217 2874 2508	2124	\$138 46837 4091	2794 2228 2022 1783	1520	1964 1767 1610 1456
Audius of Cyrmion	Asts	1-1	iun.	8.27 9.11	# 555 555 555 555 555 555 555 555 555 55	8883	25.00 20.00 20.00 20.00	90000	202	4 4 4 4 4 5 5 5 4 5 4 5 4 5 4 5 4 5 4 5	3.89	17.45	55105	222	24448 21000 110000
Radius	Asia	3-4	crit	38.1	1-000	34.3	3008	22.8 27.8 27.8	90 W W.	0000 0000	110	1111	TARAT	20.8	1 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
7.	Axis	7.7	cort	42481	10425 10425 8632	10861 8384 1117	7629 6376 5000	\$228 \$381 4789 3002	14973	4253 3154 2658	1203	16064	3206 2766 2512 2512 -1126	1027	2216 1980 1745 1328
Moreon of tremia	1-1	M	tion.	171878 \$\$1835	409900 406500 350209 300783	259625	221139 10934: 166213	155106 137965 1255154	192203 140289 115233	101886 89876 79845 89132	\$7236	121777 107862 \$3847	#8718 90218 90050 03062	36762	40469 36813 32865 28870 28870
9	Ante	Grees	£862	717325	435794 375111 324715	275633	239464 20477 168535	150016 150016 135972 11770C	207252	111673 86408 87260 75549	80870 81788	141862 125618 109109	96078 66610 61530 55125 67361	40414 35003	40055 40955 33524 29524 29537
Parent Land	Spirit		100	\$14 × 419	814 - 308	838 × 232	762 = 367	616 - 254	810 × 300	610 × 229	810 × 476	523 × 336	E33 × 210	523 × 165	457×191

Mess Dagsh Width Thickness	18	in ann		9.00	828	226 8503 194 840.7	768	568 578 578 578 578 578 578 578 578 578 57	238 633 78 617 44 609	140 125 113 8073 101 6022	61 82 82 83 83 83 83	212 189 5345 167 533.4	122 102 101 101 101 102 103 103 103 103 103 103 103 103 103 103	73 528.8	98 89 82 82 463 460 74 457 457 457 653 653 653 653 653 653 653 653 653 653
Width		918	818	第二	840	S 255	2578	SEER		817.0 807.3 807.3 802.2	01/0	5000 S	なのなれただ	200	200000
	10		11 12												
Thebress	Section	1828		420.9	2000	293.4 292.4 292.4	888	155.8 253.7 253.7 253.7	311.0	2280- 2280- 2282 2275-	178.4	3317	211.0 210.1 200.1 200.1	166.6	1920
Name of Street	Web	ute	1 0	- 6	955	3 593	27.0	2022	277	2228	10.0	925	80000	20	15000
	Plange	hear	3	200	2222	22.2	444	23.7 210 182 182	23.6	1221	12.8	22.8	25252	100	92.094
Hook	Radko	100				8.00	000	2222	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	2222	222	555	95555	12.7	20000
Depth	ribes 4	man			2000	COLUMN TO SEC.	2222	2000 2000 2000 2000	555	1111	547.1	450.1	55555	476.5	30000
New York	Section	'man'	9	100	중점점	227.0	250.6	5000	3035 2277 1889	1444	1044	2898 2412 2127	1556 13884 1276 1176 1043	83.6	250 200 200 200 200 200 200 200 200 200

UNIVERSAL BEAMS

DIMENSIONS AND PROPERTIES