

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN BUILDING TECHNOLOGY DIPLOMA IN ARCHITECTURE

MODULE III

STRUCTURES III

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:
answer booklet;
scientific calculator:
This paper consists of EIGHT questions.
Answer any FIVE questions.
Maximum marks for each part of a question are as indicated.
All relevant tables for this examination are provided.
Candidates should answer the questions in English.

This paper consists of 14 printed pages.
Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

1. A 230 kN reaction from a beam of which a half is due to the imposed loads is supported at the top of a pin-jointed stanchion, 4 m long.
Check if a $203 \times 203 \times 46 \mathrm{~kg} / \mathrm{m}$ U.C. in grade S 275 steel is satisfactory.
Assume that the beam to stanchion connection is to the web as shown in figure 1.

Fig. 1

Using moment distribution method, analyse the loaded portal frame shown in figure 2 and hence draw the bending moment diagram showing values at critical points.

Fig. 2
3. A reinforced conerete suspended slab of a library is supported on universal beams as
shown in figure 3. The design loading has been estimated as:

- Dead loads from slab, finishes, self weight, etc $=6 \mathrm{kN} / \mathrm{m}^{2}$
- Imposed loads from furniture, books, etc $=4 \mathrm{kN} / \mathrm{m}^{2}$

Determine the suitable zection of universal beam for beam B_{2} in grade $S 275$ stecl and hence check shear, moment capacity and deflection given that:

- permissible deflection $=1 /$ sen of span.
- $\mathrm{E}_{\text {vieel }}=210 \mathrm{kN} / \mathrm{mm}^{2}$
- Allowable shear $=0.6$ py
(20 marks)

Fig. 3
 Figure 4 shows a loaded continuous beam. Using the three moment theorem, analyze the beam and hence plot the shear force and bending moments diagram indicating values at critical points.
(20) marks)

Fig. 4
5. (a) State two methods of grading structural timber giving one advantage of each.
(b) Figure 5 shows a loaded timber joist beam. Check the adequacy of the $250 \times 100 \mathrm{~mm}$ joist in shear, bending and deflection given the following data:

Grade stresses for Cl 8 timber:

- In bending parallel to grain $=5.8 \mathrm{~N} / \mathrm{mm}^{2}$
- In shear parallel to grain $=0.67 \mathrm{~N} / \mathrm{mm}^{2}$

Permissible deffection $=1 / 360$ of span
Modification factors: $\mathrm{K}_{3}=1.25 \mathrm{~K}_{7}=1.04$ and $\mathrm{K}_{8}=1.1$
Actual deflection $\delta=\frac{5 u l^{+}}{384 E I}+\frac{\mathrm{WI}^{3}}{48 \mathrm{EI}}$
Where: $\mathrm{w}=$ imposed factored load (U.D.L.)
W = Imposed factored point loads.
$\mathrm{E}_{\text {mean }}=9100 \mathrm{~N} / \mathrm{mm}^{2}$
(16 marks)

6. (a) State three situations where influence lines can be applied in structures.
(b) A girder has a span of 40 m . Two concentrated loads of 18 kN and 25 kN at a fixed distance of 5 m , rolling along it are applied. Find the value of maximum B.M. and S.F. at $10 \mathrm{~m}, 20 \mathrm{~m}$ and 30 m from the left hand end.
7. Analyse the loaded beam shown in figure 6 using moment distribution method and hence draw the shear force and bending moment diagrams, indicating values at all critical points.
(20 marks)

Fig, 6
8. (a) Using neat sketches, illustrate the following types of welds:
(i) Double ' U' but weld;
(ii) Double 'V' butt weld;
(iii) Singlo ' J ' butt weld.
(b) Figure 7(a) shows a steel bolted joint of two tension members of size $15 \times 200 \mathrm{~mm}$

Determine suitable sizes of bolts to be used to withstand the tensile force applied of 175 kN .
Take: Shear strength of bolts $\mathrm{P}_{\mathrm{S}}=375 \mathrm{~N} / \mathrm{mm}^{2}$
Bearing strength on plate P bt $=1000 \mathrm{~N} / \mathrm{mm}^{2}$

Fig. 7 (a)
(c) A single equal angle section of size $75 \times 75 \times 15 \mathrm{~mm}$ is welded to a gusset plate as shown in figure 7(b). It is to transmit a load of 160 kN . Design the joint using an 8 mm fillet weld given that:
permissible shear stress in weld $=220 \mathrm{~N} / \mathrm{mm}^{2}$.
(6 marks)

2705/302
2709/302
2710/302
JwheiJuly 2079
Fig 7 (b)

Strength of bolts in clearance holes

	Bolt grade ($\mathrm{N} / \mathrm{mm}^{2}$)	
	4.6	8.8
Shear strength, ph	160	375
Bearing, strength, B h	460	1035
Tension strength, P	195	450

Strut table selection

Type of section	Thickness ${ }^{\text {a }}$	Axis of buckling	
		x-x	$y-y$
Hot-rolled structural hollow section		-	-
Rolled I-section		-	-
Rolled H -section	Up to 40 mm	Table 8(a)	Table 8(b)
	Over 40 mm	Table 8(b)	*

${ }^{1}$ For thicknesses between 40 and 50 mm the value of po may be taken as the average of the values for thicknesses up to 40 mm and over 40 mm

Areas of group of reinforcement bars (mm^{2})										
$\begin{gathered} \text { Buir } \\ \text { Diameter } \\ \text { (min) } \end{gathered}$	Number of bars									
	1	2	3	4	5	6	7	8	9	10
6 8	28	57	85	113	141	170	198	226	254	283
	50	101	151	201	251	302	352	402	452	503
12	$\begin{array}{r} 79 \\ 113 \end{array}$	$\begin{aligned} & 157 \\ & 226 \end{aligned}$	236 339	314	393 565	471 679	550	628	707	785
16	201	402	603	804	1005	1206	1407	1608	1809	1131
20	314	628	942	1257	1571	1885	2199	2513	2827	3142
25	491	982	1473	1963	2454	2945	3436	3927	4418	4909
32	804	1608	2412	3216	4021	4825	5629	6433	7237	8042
40	1256	2513	3769	5026	6283	7539	8796	10050	11310	12570

UNIVERSAL BEAMS

DIMENSIONS

Svetion Deaghtatur	Mass pary Metro kgit：	Dupthor Seutiorn	Wath 4 Sectian$\begin{gathered} \mathrm{B} \\ \mathrm{~mm} \end{gathered}$	Thigrmm		Hoct Raghes$\stackrel{\mathrm{r}}{\mathrm{~mm}}$	Onth Bopispert Fively d ms	Batias for Lops Bucking		Dimensiong fir Dosailing			Gramin Arsy	
				WatI				$\begin{aligned} & \text { Flangn } \\ & \text { brt } \end{aligned}$	Whed ， 4		Nonh			
				$\frac{1}{m}$	$\stackrel{T}{\mathrm{~m}}$						M	$\frac{\pi}{n}$		
$407 \times 191 \times 36$ $407 \times 127 \times 199$ $457 \times 191 \times 98$ $45 x^{2} 16 \pi x$ $45 \text { र हा } 191 \times 6$	$\begin{array}{r} 20.3 \\ 50.3 \\ 20.0 \\ 74.3 \\ 68.1 \end{array}$	2072 6194 4600 460 4534		11.4 10.5 8.9 90 8.5	180 187 110 145 127	$\begin{aligned} & 16.2 \\ & 102 \\ & 102 \\ & 102 \\ & 102 \end{aligned}$	$\begin{aligned} & 407.8 \\ & 407.3 \\ & 407.3 \\ & 407 / \\ & 407 . \end{aligned}$	$\begin{aligned} & 492 \\ & 580 \\ & 5.08 \\ & 6.97 \\ & 7.818 \end{aligned}$	35.8 94.8 41.2 45.3 40.0	$\begin{aligned} & \frac{8}{7} \\ & \frac{1}{7} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 109 \\ & 102 \\ & 102 \end{aligned}$	$\begin{aligned} & 30 \\ & 38 \\ & 20 \\ & \frac{k 0}{24} \\ & \frac{1}{24} \end{aligned}$	$\begin{aligned} & 1.07 \\ & 1.86 \\ & 1.85 \\ & 1.64 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 159 \\ & 159 \\ & 20.1 \\ & 20.1 \\ & 243 \end{aligned}$
	307 742 372 35.2 52.3	655.8 6820 458.0 4546 4028	155.3 154.4 15.9 1529 152.4	10.5 9.6 9.0 618 78	12.9 170 15.0 13.3 109	$\begin{aligned} & 102 \\ & 102 \\ & 102 \\ & \hline 102 \\ & 102 \end{aligned}$	40 400.8 tor： 8 4015 400.5	8.11 454 stb 3.15 flent	$\begin{aligned} & 38.8 \\ & 48.5 \\ & 453 \\ & 30.3 \\ & 39.1 \end{aligned}$	$\begin{aligned} & \frac{7}{2} \\ & \frac{1}{6} \\ & \frac{1}{6} \end{aligned}$	$\begin{aligned} & 94 \\ & 04 \\ & 34 \\ & 84 \\ & 84 \end{aligned}$	$\begin{aligned} & \frac{30}{20} \\ & \frac{20}{20} \\ & \frac{21}{20} \end{aligned}$	$\begin{aligned} & 1.91 \\ & 1.90 \\ & 150 \\ & 1.49 \\ & 148 \end{aligned}$	$\begin{aligned} & 184 \\ & 80.3 \\ & 22.3 \\ & 34.9 \\ & 38.2 \end{aligned}$
$\begin{aligned} & 406 \times 173=74 \\ & 460 \times 173 \times 87 \\ & 400 \times 173 \times 80 \\ & 405 \times 178 \times-54 \end{aligned}$	$\begin{aligned} & 74.2 .1 \\ & 37.1 \\ & 20.1 \\ & 54.1 . \end{aligned}$	412.8 40.4 400.4 40208	$\begin{aligned} & 170.5 \\ & \text { 178 } \\ & 1769 \\ & 177.7 \end{aligned}$	9.5 0.8 7.8 7.7	$\begin{aligned} & 10.9 \\ & 14.3 \\ & 12.3 \\ & 10.2 \end{aligned}$	$\begin{aligned} & 102 \\ & 162 \\ & 302 \\ & 102 \end{aligned}$	$\begin{aligned} & 300.4 \\ & 360.4 \\ & 380.4 \\ & 760.4 \end{aligned}$	$\begin{aligned} & 5191 \\ & \text { fin } \\ & 535 \\ & 535 \end{aligned}$	$\begin{aligned} & 129 \\ & 41.0 \\ & 15.0 \\ & 16.8 \end{aligned}$	$\begin{aligned} & f \\ & 6 \\ & \frac{1}{6} \end{aligned}$	$\begin{aligned} & 180 \\ & 95 \\ & 96 \\ & 96 \end{aligned}$	$\begin{aligned} & 20 \\ & 26 \\ & 24 \\ & 24 \\ & 22 \end{aligned}$	$\begin{aligned} & 1.51 \\ & 1.50 \\ & 1.69 \\ & 1.48 \end{aligned}$	$\begin{aligned} & 203 \\ & 208 \\ & 248 \\ & 27 A \end{aligned}$
$406 \times 149 \times 48$ $+06 \times 140 \times 19$	280 300	408.2 350.0	1427 1418	$\begin{aligned} & 6.0 \\ & 84 \end{aligned}$	11.2 8.6	$\begin{array}{r} 102 \\ 102 \end{array}$	2604，	$\begin{aligned} & 8.36 \\ & 84 \end{aligned}$	$\begin{aligned} & 390 \\ & 5013 \end{aligned}$	5	$\begin{aligned} & 38 \\ & 78 \end{aligned}$	$\begin{aligned} & 22 \\ & 30 \end{aligned}$	$\begin{array}{r} 134 \\ +193 \end{array}$	$\begin{array}{r} 22 \\ 92 \\ \hline \end{array}$
$\begin{aligned} & 308 \times 171 \times 9 \mathrm{Cl} \\ & 309 \times 171 \times 57 \\ & 358 \times 171 \times 51 \\ & 356 \times 171 \times 48 \end{aligned}$	$\begin{aligned} & \operatorname{tr1} \\ & 470 \\ & 310 \\ & 450 \end{aligned}$	$\begin{aligned} & 3 m 24 \\ & 15 t 0 \\ & 3020 \\ & 351.4 \end{aligned}$	1732 1722 17.5 121.1	8.1 8.1 7.4 7.0	$\begin{aligned} & 15.2 \\ & 13.0 \\ & 113 \\ & 97 \end{aligned}$	$\begin{aligned} & 102 \\ & 102 \\ & 102 \\ & 102 \end{aligned}$	$\begin{aligned} & 318 \\ & 318 \\ & 3118 \\ & 31,5 \end{aligned}$	5.52 K荡 7． 6 \＃12	$\begin{aligned} & 342 \\ & 3 e 5 \\ & 121 \\ & 445 \end{aligned}$	$\begin{aligned} & 7 \\ & \frac{9}{5} \\ & \frac{1}{8} \end{aligned}$	$\begin{aligned} & 94 \\ & 94 \\ & 04 \\ & 94 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \\ & 20 \\ & 80 \end{aligned}$	$\begin{aligned} & 1,99 \\ & 1.97 \\ & 1.38 \\ & 1.07 \end{aligned}$	$\begin{aligned} & 2 m n \\ & 241 \\ & 347 \\ & 301 \end{aligned}$
$356 \sim 127 \times 30$ $756 \times 127 \times 29$	39.7 20.7	3814 3820	1850 124.4	$\begin{aligned} & 6.6 \\ & e .0 \end{aligned}$	$\begin{aligned} & 30.7 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 102 \\ & 102 \end{aligned}$	$\begin{aligned} & \text { य11 } \\ & 321.6 \end{aligned}$	$\begin{aligned} & \text { 518 } \\ & 738 \end{aligned}$	$\begin{aligned} & 472 \\ & 51.9 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\frac{\pi}{\pi}$	$\frac{20}{2 a}$	1.818 1.17	3038
$\begin{aligned} & 305 \times 106 \times 54 \\ & 305 \times 105 \times 14 \\ & 305 \times 105=10 \\ & \hline \end{aligned}$	$\begin{aligned} & 540 \\ & 25.1 \\ & 40.3 \end{aligned}$	$\begin{aligned} & 3104 \\ & 308,{ }_{2}^{1} \\ & 300.4 \end{aligned}$	$\begin{array}{r} 1889 \\ 1057 \\ +85: 0 \end{array}$	$\begin{aligned} & 70 \\ & 87 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 13 y \\ & 14,18 \\ & 108 \end{aligned}$	$\begin{aligned} & 89 \\ & 69 \\ & 89 \end{aligned}$	$\begin{aligned} & 2659 \\ & 2552 \\ & 2652 \end{aligned}$	$\begin{aligned} & 8.00 \\ & 7.00 \\ & -8.6 p \end{aligned}$	$\begin{aligned} & 39.21 \\ & 30.6 \\ & 462 \end{aligned}$	$\frac{8}{5}$	$\begin{aligned} & 90 \\ & 30 \\ & 90 \end{aligned}$		$\begin{aligned} & 125 \\ & 125 \\ & 124 \end{aligned}$	$\begin{aligned} & 233 \\ & \text { 201 } \\ & \text { soal } \end{aligned}$
$\begin{aligned} & 305 \times 127 \times 4 n \\ & 20 f \times 127=12 \\ & 305 \times 127 \times 37 \end{aligned}$	$\begin{aligned} & 43,1 \\ & 419 \\ & 3 \geq 0 \end{aligned}$	$\begin{array}{r} 3+1.0 . \\ 307.2 \\ -304.4 \end{array}$	$\begin{aligned} & 132 \\ & 1243 \\ & 1224 \end{aligned}$	$\begin{aligned} & 80 \\ & 30 \\ & 20 \end{aligned}$	$\begin{aligned} & 940 \\ & 13, \\ & 10.7 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 3.8 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 2882 \\ & 2952 \\ & 2858 \end{aligned}$	$\begin{aligned} & 44 y \\ & \text { E14 } \\ & 5 \pi 7 \end{aligned}$		$\begin{aligned} & 7 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 00 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 3 t \\ & 32 \\ & 30 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 100 \mathrm{OE} \\ & \mathrm{t} 0 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 2877 \\ & 25.8 \\ & 2909 \end{aligned}$
$\begin{aligned} & 305 \times 102=00 \\ & 305 \times 102 \times 20 \\ & 365 \times 162 \times 25 \end{aligned}$	$\begin{aligned} & 38.9 \\ & \frac{38.2}{24.3} \end{aligned}$	$\begin{aligned} & 252.27 \\ & 3687 \\ & 315.1 \end{aligned}$	$\begin{aligned} & \text { ytay } \\ & \text { yata } \\ & \text { tas. } \end{aligned}$	$\begin{aligned} & 5.8 \\ & 6.0 \\ & 8.9 \end{aligned}$	$\begin{aligned} & 108 \\ & 5.8 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.8 \\ & 76 \end{aligned}$	$\begin{aligned} & 2750 \\ & \text { apto } \\ & \text { athoi } \end{aligned}$	$\begin{aligned} & 4.74 \\ & 125 \\ & 728 \end{aligned}$	$\begin{aligned} & 4128 \\ & 4608 \\ & 475 \end{aligned}$	$\begin{aligned} & 8 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { GR } \\ & 00 \\ & 58 \end{aligned}$	$\begin{gathered} 20 \\ 70 \\ 70 \\ 70 \end{gathered}$	$\begin{aligned} & 1.09 \\ & 1.00 \\ & 0.008 \end{aligned}$	$\begin{gathered} 301 \\ 350 \\ 4) 0 \end{gathered}$
$\begin{aligned} & 254 \times 148 \times 34 \\ & 25 \times 148 \times 3 \\ & 25 \times 14 \times 3 t \end{aligned}$	$\begin{aligned} & 430 \\ & 370 \\ & 310 \end{aligned}$	$\begin{aligned} & 252.6 \\ & 9560 \\ & 2520 \end{aligned}$		$\begin{aligned} & 2.2 \\ & 6.3 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 12.7 \\ & 309 \\ & 3.9 \end{aligned}$	78 78 785	$\begin{aligned} & 2139 \\ & 2139 \\ & 2190 \end{aligned}$	$\begin{aligned} & 306 \\ & 8.02 \\ & 8.67 \end{aligned}$	$\begin{aligned} & 30.6 \\ & 36 \cdot \mathrm{e} \\ & 3 \mathrm{~F} .5 \end{aligned}$	$\begin{aligned} & \frac{5}{5} \\ & 5 \end{aligned}$	$\begin{aligned} & 8 e \\ & \frac{30}{3} \end{aligned}$	$\frac{22}{18}$	$\begin{aligned} & 1.08 \\ & 107 \\ & 108 \\ & 108 \end{aligned}$	$\begin{aligned} & 251 \\ & 301 \\ & 362 \end{aligned}$
$\begin{aligned} & 354 \times 102 \times 30 \\ & 254 \times 102 \times 28 \\ & 254 \times 108=25 \end{aligned}$	$\begin{aligned} & 39.3 \\ & 2 \& 2 \\ & 20.0 \end{aligned}$		$\begin{aligned} & 100= \\ & 100.3 \\ & 1014 \end{aligned}$	$\begin{aligned} & 69 \\ & 60 \\ & 57 \end{aligned}$	$\begin{aligned} & 100.1 \\ & \text { i. } \\ & \mathbf{~} .0 \\ & \hline \end{aligned}$	$\begin{aligned} & 78 \\ & 78 \\ & 70 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 205 ? \\ & 2262 \\ & 22512 \end{aligned}$	$\begin{aligned} & 511 \\ & 60 \% \\ & 7.47 \end{aligned}$	$\begin{aligned} & 357 \\ & 35.7 \\ & 30.7 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & \hline \end{aligned}$		$\begin{gathered} 18 \\ 16 \\ 16 \end{gathered}$	$\begin{aligned} & 1804 \\ & \text { 2as9 } \\ & \text { caso } \end{aligned}$	$\begin{aligned} & 32.9 \\ & 74.6 \\ & 4.5 \end{aligned}$
	$\begin{aligned} & 3010 \\ & 251 \end{aligned}$	$\begin{aligned} & \text { Poca } \\ & \text { axiz } \end{aligned}$	$\begin{array}{r} 4339 \\ 1338 \end{array}$	$\frac{64}{14}$	$\frac{04}{1 \mathrm{~A}}$	$\begin{aligned} & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 1 / 24 \\ & 17<4 \end{aligned}$	$\begin{aligned} & 6.95 \\ & 8.54 \end{aligned}$	$\frac{2939}{302}$	$\frac{5}{4}$	$\begin{aligned} & 74 \\ & 14 \end{aligned}$	$\begin{aligned} & 1 \pi \\ & 90 \\ & \hline 9 \end{aligned}$	$\begin{aligned} & \text { onen } \\ & \text { in\# } \end{aligned}$	$\begin{aligned} & 30.1 \\ & 32.1 \end{aligned}$
205 以 Cim	83， 7	7ay	1014	5.4	＊23	780	162． 4	547	21．4	5	0	10	0.790	34.8
178x 108×18	180	177.1	1912	¢ 8	72	17%	445：	A 41	30．63	4	60	409	0.738	tin 5
4120303016	18.9	1524	甠圌	4.5	17	78	122.8	Sive	27.1	4	58	16	C6sal	308
$127 \times 75=15$	118	－187，0	780	40	28	78	30.0	5.9018	\％ 4.	4	elin 4	17	4537	$4 \div 3$

Table 8(a): Compressive strength, $p_{c}\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$ for struts

$\lambda_{\lambda} P y$	225	245	255	265	275	$\int_{2}{ }^{P y}$	225	245	255	265	275
15	225	245	255	265	275	96	133	140	143	146	148
20	224	243	253	263	272	98	130	137	139	142	245
25	220	239	248	258	267	100	127	133	136	138	141
30	216	234	243	253	262	102	124	130	132	135	137
35	211	229	238	247	256	104	122	127	129	131	133
40	207	224	233	241	250	106	119	124	126	128	230
42	205	222	231	239	248	108	116	121	123	125	126
44	203	220	228	237	245	110	113	118	120	121	123
46	201	218	226	234	242	112	111	115	117	118	120
48	199	215	223	231	239	114	108	112	114	115	117
50	197	213	221	229	297	116	105	109	111	112	114
52	195	210	218	226	234	118	103	106	108	109	111
54	192	208	215	223	230	120	100	104	105	107	108
56	190	205	213	220	227	122	98	101	103	104	105
58	188	202	210	217	224	124	96	99	100	101	102
60	185	200	207	214	221	126	94	96	97	99	100
62	183	197	204	210	227	128	91	94	95	96	97
54	180	194	200	207	213	130	89	92	93	94	95
66	178	191	197	203	210	135	84	86	87	B8	89
68	175	188	194	200	206	140	79	81	82	83	84
70	172	185	190	196	202	145	75	77	78	78	79
72	169	181	187	193	198	150	71	72	73	74	74
74	167	178	183	189	194	155	61	69	69	70	70
76	164	175	180	185	190	160	64	65	66	66	66
78	161	171	176	181	186	165	60	61	62	63	63
80	158	168	172	177	181	170	57	58	59	59	60
82	255	164	169	173	177	175	55	56	56	56	57
84	152	161	165	169	173	180	52	53	53	54	54
85	149	157	161	165	169	185	49	50	51	51	51
88	146	154	158	161	165	190	47	48	48	48	49
90	143	150	154	157	161	195	45	46	46	46	47
92	139	147	150	153	156	200	43	44	44	44	44
94	136	143	147	150	152						

Table $\mathrm{a}(\mathrm{b})$: Compressive strength, $\mathrm{Pc}_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ for struts

$\boldsymbol{P Y}$	225	245	255	265	275	$p y$	225	245	255	265	275
15	225	245	255	265	275	96	118	124	127	129	132
20	224	242	252	261	271	98	115	121	123	126	129
25	217	235	245	254	263	100	112	118	120	123	125
30	211	228	237	246	255	102	110	115	118	120	122
35	204	221	230	238	247	104	107	112	115	117	119
40	198	214	222	230	238	106	105	110	112	114	116
42	195	211	219	227	235	108	102	107	109	111	113
44	193	208	216	224	231	110	100	104	106	108	110
46	190	205	213	220	228	112	98	102	104	106	107
48	187	202	209	217	224	114	96	99	101	103	105
50	184	199	206	213	220	116	93	97	99	101	102
52	181	196	203	210	217	118	91	95	96	98	100
54	179	193	199	206	213	120	89	93	94	96	97
56	176	189	196	202	209	122	87	91	92	93	95
58	173	186	192	199	205	124	85	88	90	91	92
60	170	183	189	195	201	126	83	86	88	89	90
62	167	179	185	191	197	128	82	84	86	87	88
64	164	176	182	188	193	130	80	82	84	85	86
66	161	173	178	184	189	135	75	78	79	80	81
68	158	169	175	180	185	140	71	74	75	76	76
70	155	166	171	176	181	145	68	70	70	71	72
72	152	163	168	172	177	150	64	66	67	68	68
74	149	159	164	169	173	155	61	63	83	64	65
76	146	156	160	165	169	160	58	59	60	61	61
78	143	152	157	161	165	165	55	56	57	58	58
80	140	149	153	157	161	170	52	54	54	55	55
82	137	146	150	154	157	175	50	51	52	52	53
84	134	142	146	150	154	180	48	49	49	50	50
86	132	139	143	146	150	185	46	46	47	47	48
88	129	136	139	143	146	190	43	44	45	45	46
90	126	133	136	139	142	195	42	42	43	43	43
92	123	130	133	136	139	200	40	41	41	41	42
94	120	127	130	133	135						

UNIVERSAL COLUMINS

PROPERTIES

BNetion Daspogaion	Bucond Namarsof thome If Now		Haxlun of Eyration		Amitr Modula		Thate Modvain		Buciding Farmollor 11	Jormionai Inctax π	Waperer Corntyr H © $4 \mathrm{~F}^{\circ}$	Tarcignal Combant$\frac{1}{2 m}$	
	$\begin{aligned} & \text { foon } \\ & x=1 \\ & \text { for } \end{aligned}$	Axin FH	$\begin{aligned} & \text { Noty } \\ & \text { pix } \\ & \text { ant } \end{aligned}$		Axay XCX （17 ${ }^{2}$	$\left\lvert\, \begin{aligned} & A x s \\ & \mathrm{~cm}^{3} \end{aligned}\right.$	An $x \times$ $o n^{2}$	$\begin{aligned} & \mathrm{arlz} \\ & \mathrm{H} \\ & \mathrm{~min} \end{aligned}$					
	276000 229000 185000 147000 125800 89600 ग7loc		184 180 178 17% 169 189 189	110 100 10.7 70.5 10.4 10.2 102			$\begin{aligned} & 18200 \\ & 12400 \\ & 10000 \\ & k 220 \\ & 7000 \\ & 1000 \\ & 4800 \end{aligned}$	710 6000 18000 450 3340 1980 2380	$\begin{aligned} & 0.343 \\ & 0.841 \\ & 0.909 \\ & 0.497 \\ & 0.335 \\ & 0.554 \\ & 6.835 \end{aligned}$	5.46 8.05 6.80 7.97 3.84 102 12.0	$\begin{aligned} & 38.8 \\ & 34.1 \\ & 24.3 \\ & 180 \\ & 15.0 \\ & 123 \\ & 9.54 \\ & \hline \end{aligned}$	43508 9540 5 Tsma 290 140 t12	
		$\begin{aligned} & 2700 \\ & 21500 \\ & 12500 \\ & 1+600 \end{aligned}$	$\begin{aligned} & 10.7 \\ & 18.9 \\ & 15.8 \\ & \text { fils } \end{aligned}$	$\begin{aligned} & 8.80 \\ & 9.51 \\ & \hline 0.69 \\ & 8.49 \end{aligned}$	$\begin{aligned} & 2540 \\ & 3100 \\ & 0690 \\ & 2700 \end{aligned}$	1200 1150 940 283	$\begin{aligned} & 2970 \\ & 3460 \\ & 2979 \\ & 2610 \end{aligned}$	$\begin{aligned} & 1806 \\ & 1600 \\ & 1400 \\ & 1000 \end{aligned}$	6.844 0.382 0.864 あぁた	$\begin{aligned} & 13.4 \\ & 16.0 \\ & 17.0 \\ & 12.0 \end{aligned}$	7.14 0.00 E． 11 4.5 블		28 295 35 104
$\begin{aligned} & 305 \times 305 \times 201 \\ & 305 \times 306 \times 240 \\ & 305 \times 305 \times 190 \\ & 395 \times 305 \approx=750 \\ & 305 \times 300=191 \\ & 305 \times 305 \times 118 \\ & 305=306 \times 39 \end{aligned}$	70000 8800 30000 30500 20300 27200 82900	20000 20000 78500 18000 10700 7080 7310	14.3 14.5 14.2 13 19.7 150 13.4	$\begin{aligned} & 8.27 \\ & 0.15 \\ & 8.04 \\ & 7.00 \\ & 7.83 \\ & 7.78 \\ & 7.82 \end{aligned}$	$\begin{aligned} & 4390 \\ & 3840 \\ & 3000 \\ & 2370 \\ & 3090 \\ & 1760 \\ & 1450 \end{aligned}$	1530 1200 1020 308 692 589 472	$\begin{aligned} & 5110 \\ & 4850 \\ & 3440 \\ & 2510 \\ & 2000 \\ & 1060 \\ & 1500 \end{aligned}$	2240 ± 950 1620 1250 1050 925 728	2058 Qass $0=4$ － 0.302 0.85 16.82	$\begin{aligned} & 7.85 \\ & 7.74 \\ & 10.2 \\ & 725 \\ & 14.1 \\ & 162 \\ & 10.2 \end{aligned}$	530 5.01 3.89 2.87 1.30 1.88 1.85	2000 4270 734 330 249 101 34.2	$\begin{aligned} & 365 \\ & 306 \\ & 202 \\ & 271 \\ & i 24 \\ & 130 \\ & 123 \end{aligned}$
$\begin{aligned} & 254 \times 254 \times 197 \\ & 254 \times 254 \times 1.20 \\ & 254 \times 244 \times 10 \\ & 254 \times 254 \times 19 \\ & 254 \times 254 \times 72 \end{aligned}$			$\begin{aligned} & 18.7 \\ & 11.8 \\ & 11.12 \\ & 11.2 \\ & 11.1 \end{aligned}$	$\begin{aligned} & 5.81 \\ & 6.09 \\ & 0.59 \\ & 8.55 \\ & 0.48 \end{aligned}$	$\begin{aligned} & 2980 \\ & 1630 \\ & 1810 \\ & 1100 \\ & 190 \end{aligned}$	$\begin{aligned} & 746 \\ & 576 \\ & 4501 \\ & 379 \\ & 307 \end{aligned}$	$\begin{aligned} & 2400 \\ & 1070 \\ & 3450 \\ & 1220 \\ & 392 \end{aligned}$	1720 375 677 575 465	0.851 0.850 0.849 8.851 0.849	$\begin{aligned} & 8.50 \\ & 103 \\ & 124 \\ & 14.5 \\ & 179 \end{aligned}$	$\begin{aligned} & 1.83 \\ & +10 \\ & 0.198 \\ & \text { a.75 } \\ & 4.5 e 8 \end{aligned}$	CRE 212 172 109 573	$\begin{aligned} & 123 \\ & \hline 274 \\ & 189 \\ & 130 \\ & 113 \\ & 32.1 \end{aligned}$
		1130 2540 2090 1780 1650		$\begin{aligned} & 534 \\ & 8,90 \\ & 3.20 \\ & 518 \\ & 5,15 \end{aligned}$	350 700^{-} 534 510 450	$\begin{aligned} & 299 \\ & 296 \\ & 201 \\ & 174 \\ & 102 \end{aligned}$	$\begin{aligned} & 977 \\ & 794 \\ & 650 \\ & 367 \\ & 48 \end{aligned}$	$\begin{aligned} & 439 \\ & 374 \\ & 305 \\ & 2041 \\ & 231 \end{aligned}$		$\begin{aligned} & 102 \\ & 11.9 \\ & 14.1 \\ & 15.8 \\ & 12.7 \end{aligned}$	$\begin{aligned} & 0.313 \\ & 0.250 \\ & 0.197 \\ & 0.167 \\ & 0.1420 \end{aligned}$	$\begin{array}{r} 198 \\ 809 \\ 472 \\ 218 \\ 228 \end{array}$	
$\begin{aligned} & 352 \times 152 \times 37 \\ & 159 \times 152 \times 30 \\ & 152 \times 152=22 \end{aligned}$	$\begin{aligned} & \mathrm{nero} \\ & 1700 \\ & 1250 \end{aligned}$	706 0 500 6 400 6	$\begin{array}{l\|l} 6 \pi & 3 \\ 678 & 2 \\ 6[14 & 1 \end{array}$	$\begin{aligned} & 383 \\ & \begin{array}{l} 183 \\ 1 \end{array} \end{aligned}$	$\begin{array}{l\|l} 273 & 3 \\ 202 & 3 \\ f B 4 & = \end{array}$	31.5 73.3 7.5		$\begin{aligned} & 146 \\ & 102 \\ & 062 \end{aligned}$	$\$ 849$ 0348 0840	1333 180 20.7 0	$\begin{aligned} & a .0099 \\ & \text { a.0501 } \\ & 0.027 ? \end{aligned}$	192 195 483	48．1 $38:$ 29.2

UNIVERSAL COLUMNS

DIMENSIONS

Spation Designation			Wath of Sexthin 4 min	Thictoress		Ahot Ructus	Deph Duthsan 7lysa$3 \mathrm{~m}$	Fisjan lar Lioal Buiding		Dinemsons fur Deveing			Surtus Ama	
				Whe It tim				$\begin{array}{\|l\|} \hline \text { Fixnge } \\ \text { BT } \end{array}$	$\begin{aligned} & \text { Weo } \\ & d t \end{aligned}$	firt Cxamenon C Tा	Nath			
											$\frac{n}{n}$	$\left\|\begin{array}{c} n \\ \mathrm{ma} \end{array}\right\|$		
35ex $\times 468 \times-64$	6510	474.6	454.0	47.8	72.0	152	2902	2.75	10.0	\％	100	5	253	3.38
15e r $405 \times 15 \%$ ，	551.0	445.0	418．5	42.1	07.5	152	2002	2,10	L． 30	2	200	04	248	449
	487.0	48.4	412－2	\＄50．	80.0	158	2902	750	L21	20	209	14	242	E．i0
$358 \times 406 \times 381$ ，	texte	4＋9．9	487.15	30.11	492	152	2002	4.34	2， 20	17	200	5	236	605
$356 \times 408 \sim 340 \%$	3899	4084	403.0	26.6	423	15.2	290．a	4.70	10.9	ts	300	\cdots		8.00
$356 \times 406=897$ ？	387，	3653.8	309，	228	36.1	152	290.2	0.47	123	12	500	32	± 3	4．45
	－gns 1	38 ± 10	394.3	柤 4	302	＋5：2	20.2	6.54	16.3	17	300	46	238	3.03
2565368×2029	200：3	324．4	474．7	158	570	158	2000	8.34	17.9	10				
$298 \times 308 \times 177$	1710	3882	372.8	14.4	20， 0	152	290	188	20.2	7	100	40	2.17	123
258 $\times 388 \times 153$	1588	3020	20.5	22.3	20.7	158	2992	185	375	$\frac{1}{1}$	100	36	2.15	14.1
$358 \times 388 \times 125 \times$	＋239	355.4	368.4	10．4							195	3	814	te．0
206 $\times 305 \times 35$	250.8	3est	3223	2488	4.1	15.2	Suet	2.65	527	15	158	30	194	E．88
$326 \times 395 \times 240$	2400	3 mg	318.4	23811	37．7	15\％	240， 7	1．22	70.7	14	351	34	1.21	7．34
306 $\times 305 \times 98$	198.1	2 z	314.9	19.1	at， 4	152	2467	5 ser	129	t	T58	40	4．57	8.40
	108 ${ }^{\text {a }}$	307，	3412	15：8		152	2057	6.28	7173	10	＋58	42	184	11.6
$305 \times 305 \times 137$	1988	3 mas	3092	13.8	21.7	15.2	Vest？	7\％	1） 3.3	\＃	160：	33：	182	13.3
$305 \times 305 \times 116$	117.9	314.4	3074	12.8	187	16.2	0487	822	22.5	8	154	31	1．11	158
$305 \times 1905 \times 01$	959	307.5	305．3	39	154	153	346.7	997	24.9	7	158	3	1.73	38.5
$254 \times 854 \times 167$	1隹， 1	200．t	M大き	粌	31.7	127					334	45.	1.58	
$254 \times 254 \times 130$	tase	27 es	2813	14.3	253	127	s003	5，16	13.1	10	334	31	45	17.7
$254 \times 254 \times 107$ $254 \times 254 \times 99$	107.1 980	2604	288.9	12.4	20.5	12.5	20a3	fiaf	188	8.	134	34	158	142
254 $\times 254 \times 90$	983	\％ 60.3	2563	10.3	473	12.7	2003	2.41	13.4		134	30	150	189
$254 \times 254 \times 73$	7a1	251.1	2546	18.0	142	12.7.	200.3	8.90	823.	0	134	28	L．49	20.4
					28.5	102	360.3	51.10	127	3	710	38	1.24	14.4
$209 \times 309 \times 7$	72.0	2158	zues	10.0	173	102	190\％	597	18.1	7	710	28	122	172
$208 \times 203 \times 60$	500	2096	2058	0.4	142	102	1009	7298	17．1	7	110	2 n	121	20.1
$258 \times 203 \times 52$ $209 \times 208 \times 46$	520	2082	2043	79	123	10.2	1008．	617	20.4	6	t10	24	120	23.11
$208 \times 108 \times 46$	26.1	1052	2036	73	11.0	10.2	160）	925	293	4	710	22	t．19	2s．1
$352 \times 182 \times 37$	37.0	151.8	154.4	$\$ 0$	11.3	75.		0，71	155					
$182 \times 162 \times 30$	30．0．	1875		6.8	0.4	74	1285	8．1）	180	，	84	18	anct	30.0
$352 \times 159 \times 29$	209	4	152.2	89	68.8	7 f	1298	if．a	213		84	16	Q 380	

THIS IS THE LAST PRINTED PAGE．

