Name:	Index No:/
1920/104	Signature:
MATHEMATICS	
November 2013	Date:

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

CRAFT CERTIFICATE IN INFORMATION TECHNOLOGY

MATHEMATICS

3 hours

For Examiner's Use Only

Section	Question	Maximum score	Candidates score
A	1-10	40	
	11	15	
	12	15	
В	13	15	
	14	15	
	15	15	
	Total scor	e	

This paper consists of 13 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2013 The Kenya National Examinations

Turn over

SECTION A (40 MARKS)

Answer ALL questions in this section in the spaces provided.

	rentiate between primary data and secondary data as used in sta	(4 mark
(a)	Convert the following hexadecimal number to its binary equiv	valent.
	AC2	(2 marl
(b)	Evaluate the following expression involving permutation.	
	Y== 10P4 X 10P6	(2 mar)
(a)	List the stages involved in a statistical analysis process.	(2 mark
(b)	Outline three characteristics of a binomial distribution as use	d in statistics (3 mark
Eval	ain each of the following terms as used in statistics:	
ехра (a)	arithmetic mean;	(2 mark
(b)	harmonic mean.	(2 mark

1920/104

-		
Desc	ribe each of the following computer coding systems:	
(a)	American Standard Code for Information Interchange;	(2 marks
1		
(b)	Binary Coded Decimal.	(2 marks
(a)	State the binomial theorem as used in mathematics.	(2 marks
(b)	Expand the following expression using the binomial theorem;	

 Figure 1 shows three different curves that describe the levels of Kurtosis. Use it to answer the question that follows.

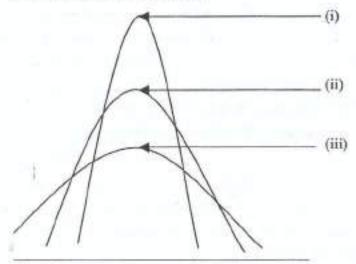


Figure I

Identify each of the curves labelled (i), (ii) and (iii).

(3 marks)

 The probability that Angeline does her homework is ¾. The probability that her teacher checks the homework is 5/6. Use a probability tree to determine the probability that Angeline does not do her homework and the teacher does not check.

(3 marks)

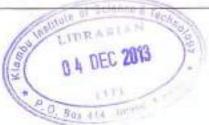
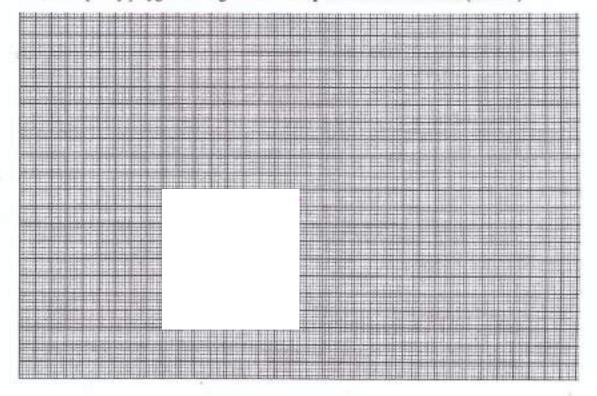



 Table 1 shows the age distribution of employees in Arimi's Construction Company Ltd. Use it to answer the question that follows;

Age(in years)	No. of employees
15 - 25	80
25 - 35	200
35 - 45	120
45 - 55	60
55 - 65	20

Table 1

Draw a frequency polygon in the grid below to represent this information. (4 marks)

SECTION B (60 MARKS)

Answer any FOUR questions in this section in the spaces provided.

11. (a) (i) Define each of the following terms as used in matrices:

I. unity Matrix;

(1 mark)

II. singular Matrix.

(1 marks)

(ii) Using One's complement, evaluate the following:

1410 - 610

(2 marks)

(b) Using Cramer's rule, solve the following simultaneous equation;

$$x + y + z = 2$$

$$x + 2y + z = 3$$

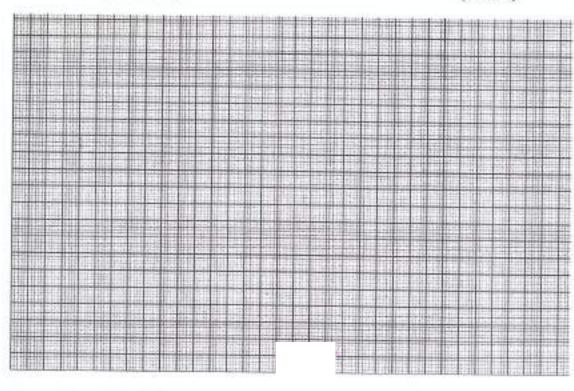
x + y + 2z = 1

(5 marks)

1920/104

(c)		is twice as old as his son Peter. 10 years ago, ter. Determine their present ages.	John was three times as old (4 marks)
(d)	A lin	e passes through points (4,7) and (-2,1), deter	rmine the equation of the (2 marks)
1			
(a)	(i)	Given x = 3, y = -5, a = -4 and b = -7: Evaluate: $\sqrt{\frac{6a^2}{x} + \frac{2b^2}{y}}$	(2 marks)
	(ii)	Using matrices solve the following set of s	imultaneous equations:
		3x + y - 3 $x + 2y = 7$	(4 marks)

1926/104 2 DEC 2013


12.

	Let $A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 0 & 2 \end{bmatrix}$	
Shov	w that AB ≠BA	(3 marks
1		
_		
		+
(c)	A bag contains 12 marbles of which four are w marbles are drawn at random from the bag with the probability that all the three balls drawn from	nout replacement. Determine om the bag are black.
(c)	marbles are drawn at random from the bag with	nout replacement. Determine om the bag are black.
(c)	marbles are drawn at random from the bag with	nout replacement. Determine om the bag are black.
(c)	marbles are drawn at random from the bag with	nout replacement. Determine om the bag are black.
(c)	marbles are drawn at random from the bag with	nout replacement. Determine om the bag are black.
(c)	marbles are drawn at random from the bag with	nout replacement. Determine om the bag are black.
(c)	marbles are drawn at random from the bag with	nout replacement. Determine om the bag are black.
(c)	marbles are drawn at random from the bag with	nout replacement. Determine

(d) Using the graph of $y=x^2+5x+4$ for $-7 \le x \le 3$, solve the following equation:

 $x^2 + 5x + 4 = 0$

(3 marks)

- (a) Outline four emerging trends in mathematical research. (4 marks)
 - (b) A research was conducted and the findings showed that everyone in the doctor's room was suffering from either a cold or Pneumonia. Assuming that13 people had a cold, 8 had pneumonia and 5 had both:
 - (i) Use a Venn diagram to represent this information;

D 4 DEC 2013

	(ii) Determine the total number of people in the doctor's s room	m. (6 marks)
(c)	Convert 3768 to its Hexadecimal equivalent,	(3 marks)
1		
(d)	Differentiate between finite and infinite sets as used in set theory.	(2 marks)
(a)	Let $S = \begin{bmatrix} 1 & 2 \\ 3 & -4 \end{bmatrix}$ and $C = \begin{bmatrix} 5 & 0 \\ -6 & 7 \end{bmatrix}$	
	that $X = 5S - 2T$ mine the value of X .	(3 marks)
		(Bat)

14.

(b)	A random sample of 12 girls is taken and is found to have a mea kilograms and a standard deviation of 9 kilograms. Determine the	A COUNTY OF THE PARTY OF THE PA
	confidence interval for the population mean weight of the girls.	(3 marks)

(c)	(i)	Solve	for v in	the following	linear	ineconstitue
(4)	369	DONNE	tot a m	me minerang	inna.	inequativy,

5x + 7 < 3(x + 1).

(2 marks)

Determine the values of a, b, c, and d given that; (ii)

$$3\begin{bmatrix} a & b \\ c & d \end{bmatrix} + 4\begin{bmatrix} 1 & -1 \\ -3 & -2 \end{bmatrix} = 2\begin{bmatrix} 1 & 0 \\ 5 & 3 \end{bmatrix}$$

(3 marks)

(d) Table 2 shows a record of four teams A,B,C and D after a hockey season. Use it to answer the question that follows.

	Win	Tie	Loss
A	5	5	2
В	3	5	4
C	6	3	3
D	2	3	7

Table 2

Two point systems, X and Y are suggested as ways of ranking the teams.

	System X	System Y
Win	4	2
Tie	1	1
Loss	0	0

Use matrices to determine the points' scored by each team using of the systems, X and Y. (4 marks)

15.	(a)	Let;

 $U = \left\{1,2,3,4,5,6,7,8,9,10,11,12\right\}$

 $A = \{1,3,5,7,9,11\}$

 $B = \{2,3,5,7,11\}$

 $C = \{2,3,6,12\}$

Determine; $(A \cup B) \cap \overline{C}$

(3 marks)

(b)	(i)	The probability that Collins hits a target	he probability that Collins hits a target if he shoots is $\frac{1}{5}$.		
-		Determine the expected number of time shoots a 100 times.	s he will hit the target if he (2 marks)		
	(ii)	Determine the binomial expansion of the 4^{th} term; $(1-y)^5$	e following expression up to (2 marks)		
1					
(c)	Using the Gaussian elimination method, solve the following simultaneous equations. (5 marks) $z - 3x - 2y = 6$				
		4x + 2y = 18			
	-3z	+8x+9y=-9			
_					
-					

(d) A box contains one white ball and five black balls. Four draws are made at random with replacement from the box. Determine the probability that the white ball is picked exactly 3 times.

(3 marks)

1920/104