StuDocu.com

Pdf SMA 104 Lecture 11(Kinematics)

Project Management (University of Nairobi)

KINEMATICS

VELOCITY AND ACCELERATION
The velocity (v) is instantaneous rate of change of position. The velocity of a moving particle can be positive or a negative, depending on whether the particle is moving in the positive or negative direction along a line of motion.
Suppose a particle moves along a horizontal straight line, with its location at time t given by its position function $s=f(t)$. Think of the time interval from t to $t+\Delta t$. The particle moves from position $f(t)$ to position $f(t+\Delta t)$ during this interval. Then v is given by $v=\lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{\Delta t}=\frac{d s}{d t}=f^{\prime}(t)$

Example: An object moving in a straight line has its displacement s meters from an origin 0 at time t seconds given by $s=t(t-3)^{2}$.
Determine a)The time when the object is at the origin
b)The time when the object is at rest
c) The distance moved between $t=0$ and $t=2$. Use $s=\sqrt{1+\left(\frac{d s}{d t}\right)^{2}}$.

Solution:

a) The object will be at the origin when $s=0$

$$
\begin{aligned}
& 0=t(t-3)^{2} ; \quad 0=t\left(t^{2}-6 t+9\right) ; \quad t^{3}-6 t^{2}+9 t=0 ; \quad t\left(t^{2}-6 t+9\right)=0 ; \\
& t=0 \quad \text { or } \quad t^{2}-6 t+9=0 ; \quad(t-3)^{2}=0 \quad t=3 \mathrm{sec} .
\end{aligned}
$$

b) $v=\frac{d s}{d t}=(t-3)^{2}+2(1)(t-3)^{\prime} t$

$$
v=\frac{d s}{d t}=t^{2}-6 t+9+2 t^{2}-6 t=3 t^{2}-12 t+9 ; \quad v=(t-3)(3 t-3)
$$

For max or min $v=0 ; \quad(t-3)(3 t-3)=0 ; t=3$ or $t=1$
The object is thus instantaneously at rest at $t=1$ and $t=3$ seconds.
(c)By second derivative

$$
\begin{aligned}
& \frac{d^{2} v}{d t^{2}}=6 t-12 ; \left.\frac{d^{2} v}{d t^{2}} \right\rvert\, t=3 \quad=18-12=6>0 \text { minimum point. } \\
& \left.\frac{d^{2} v}{d t^{2}} \right\rvert\, t=1 \quad=6-12<0 \quad \text { maximum point }
\end{aligned}
$$

When $t=3, s=0 \quad$ when $t=0, s=0$
When $t=1, s=4 \quad$ when $s=0, t=3$
When $t=1, s=4$ (distance)

Between $t=0$, and $t=1$, the velocity is positive and the object moves from position $s=0$ to $s=1(1-3)^{2}=4$.
Between $t=1$ and $t=3$, the velocity is negative and the object moves from position $s=4$ to position $s=0$.
Therefore the distance moved by the object between $t=0$ and $t=2$ will be given by 4(the positive difference between values of s at time $t=1, t=2$ respectively).
when $t=1, s=4$
when $t=2, s=2$
\therefore total distance is $(4+2)=6$ metres.
Acceleration (a) at a time t is given by $a=\frac{d v}{d t}$.
Hence to determine the acceleration at time t differentiate v with respect to t.

Examples:

1. A particle is moving in a straight line and has its displacement s metres from the origin after t seconds given by $s=e^{-\sqrt{3} t} \sin t$. Determine its displacement, velocity and acceleration when $t=\frac{\pi}{2}$ and also the smallest positive value t for which the particle is at rest (i.e. $v=0$).

Solution:

$$
\begin{aligned}
& \begin{array}{l}
s=e^{-\sqrt{3} t} \sin t ; \quad v=\frac{d s}{d t}=\cos t e^{-\sqrt{3} t}+(-\sqrt{3}) e^{-\sqrt{3} t} \sin t
\end{array} \\
& \begin{aligned}
a=\frac{d v}{d t} & =-\sqrt{3} e^{-\sqrt{3} t} \cos t+(-\sin t) e^{-\sqrt{3} t}+(-\sqrt{3})(-\sqrt{3}) e^{-\sqrt{3} t} \sin t+\cos t(-\sqrt{3}) e^{-\sqrt{3} t} \\
& =-\sqrt{3} e^{-\sqrt{3} t} \cos t-\sin t e^{-\sqrt{3} t}+3 e^{-\sqrt{3} t} \sin t+\cos t(-\sqrt{3}) e^{-\sqrt{3} t} \\
& a=-2 \sqrt{3} e^{-\sqrt{3} t} \cos t+2 e^{-\sqrt{3} t} \sin t
\end{aligned} \\
& \begin{aligned}
\therefore \text { at } t=\frac{\pi}{2}, \quad v=\frac{d s}{d t} \left\lvert\, t=\frac{\pi}{2}=-\sqrt{3} e^{-\sqrt{3} \frac{\pi}{2}} \sin \frac{\pi}{2}+e^{-\sqrt{3} \frac{\pi}{2}} \cos \frac{\pi}{2} \quad=-\sqrt{3} e^{-\sqrt{3} \frac{\pi}{2}}\right. \\
a=\frac{d v}{d t} \left\lvert\, t=\frac{\pi}{2} \quad=2 e^{-\sqrt{3} \frac{\pi}{2}}-2 \sqrt{3} e^{-\sqrt{3} \frac{\pi}{2}} \cdot 0=2 e^{-\sqrt{3} \frac{\pi}{2}}\right.
\end{aligned}
\end{aligned}
$$

The displacement at $t=\frac{\pi}{2}$ is given by $s=e^{-\sqrt{3} t} \sin t ; s=e^{-\sqrt{3} \frac{\pi}{2}} \sin \frac{\pi}{2} ; \quad s=e^{-\sqrt{3} \frac{\pi}{2}}$ metres.
When the particle at rest $v=0 ; \quad \therefore v=-\sqrt{3} e^{-\sqrt{3} t} \sin t+e^{-\sqrt{3} t} \cos t=0$
$v=e^{-\sqrt{3} t}(-\sqrt{3} \sin t+\cos t)=0 ; \quad e^{-\sqrt{3} t}>0$ for all t
$-\sqrt{3} \sin t+\cos t=0 \quad ;-\sqrt{3} \sin t=-\cos t$
$\frac{\sin t}{\cos t}=\frac{1}{\sqrt{3}} \quad ; \tan t=\frac{1}{\sqrt{3}} ; \quad t=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=30^{\circ}, 210^{\circ} ; \quad \therefore$ the smallest is $t=30^{\circ}$.
2. A distance time graph is represented by the equation $s=2 t^{3}-2 t^{2}-3 t$.

Evaluate (a)The velocity at time t
(b)The acceleration at time t

$$
\text { (c)Show that the minimum distance over attained occurs went } t=\frac{2+\sqrt{22}}{6}
$$

Solution:

(a) $v=\frac{d s}{d t}=6 t^{2}-4 t-3$
(b) $a=\frac{d v}{d t}=12 t-4$
(c) for minimum and maximum distance $v=0$

$$
\begin{aligned}
& v=6 t^{2}-4 t-3=0 ; t=\frac{4 \pm \sqrt{16+72}}{12}=\frac{4 \pm \sqrt{88}}{12}=\frac{4 \pm 2 \sqrt{22}}{12} ; t=\frac{2 \pm \sqrt{22}}{6} \\
& \therefore t=\frac{2+\sqrt{22}}{r} \text { or } t=\frac{2-\sqrt{22}}{6}
\end{aligned}
$$

Using the second derivation test

$$
\begin{aligned}
a=\frac{d v}{d t}=12 t-4 ; \quad \frac{d v}{d t} \left\lvert\, t=\frac{2-\sqrt{22}}{6}=12\left(\frac{2-\sqrt{22}}{6}\right)-4=-9 \cdot 4<0\right. \text { maximum } \\
\frac{d v}{d t} \left\lvert\, t=\frac{2+\sqrt{22}}{6}=12\left(\frac{2+\sqrt{22}}{6}\right)-4=9 \cdot 4>0\right. \text { minimum }
\end{aligned}
$$

Exercise

1. A particle moves along a straight line in such a way that after t seconds, its velocity is vms^{-1}, where $v=t^{2}-t+2$. Find the acceleration the particle(a) after 2 seconds(b) after $\frac{1}{2}$ seconds.
2.The distance s metres that a particle has gone in t seconds is given by $s=5 t+15 t^{2}-t^{3}$. Find the velocity and
acceleration after (a)3seconds (b)6seconds.When is the acceleration zero?
2. After t seconds a particle has gone s metres where $s=t^{3}-6 t^{2}+9 t+5$.
(a) After how many seconds is its velocity zero?
(b) When is its acceleration zero?
(c)Find its velocity and acceleration (i)initially (ii)after 4seconds

In summary, the motion of a particle p along a straight line is completely described by the equations $s=f(t)$, where $t>0$ is the time and s is the distance of p from a fixed point 0 in its path.
The velocity of p at time t is $v=\frac{d s}{d t}$.
If $v=0, p$ is instantaneously at rest. Acceleration of p at time t is $a=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}$

