StuDocu.com

Pdf SMA 104 Lecture 11(Kinematics)

Project Management (University of Nairobi)

KINEMATICS

VELOCITY AND ACCELERATION

The velocity (v) is instantaneous rate of change of position. The velocity of a moving particle can be positive or a negative, depending on whether the particle is moving in the positive or negative direction along a line of motion.

Suppose a particle moves along a horizontal straight line, with its location at time t given by its position function s = f(t). Think of the time interval from t to $t + \Delta t$. The particle moves from position f(t) to position $f(t + \Delta t)$ during this interval. Then v is given by

$$v = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t} = \frac{ds}{dt} = f'(t)$$

Example: An object moving in a straight line has its displacement s meters from an origin 0 at time t seconds given by $s = t(t-3)^2$.

a)The time when the object is at the origin Determine

b)The time when the object is at rest

c)The distance moved between
$$t=0$$
 and $t=2$. Use $s=\sqrt{1+\left(\frac{ds}{dt}\right)^2}$.

Solution:

a) The object will be at the origin when s=0

$$0 = t(t-3)^{2}; \ 0 = t(t^{2} - 6t + 9); \ t^{3} - 6t^{2} + 9t = 0; \ t(t^{2} - 6t + 9) = 0;$$

$$t = 0 \text{ or } t^{2} - 6t + 9 = 0; \ (t-3)^{2} = 0$$
 $t = 3 \text{sec.}$

b)
$$v = \frac{ds}{dt} = (t-3)^2 + 2(1)(t-3)^t t$$

 $v = \frac{ds}{dt} = t^2 - 6t + 9 + 2t^2 - 6t = 3t^2 - 12t + 9$; $v = (t-3)(3t-3)$

For max or min
$$v = 0$$
; $(t-3)(3t-3) = 0$; $t=3$ or $t=1$

The object is thus instantaneously at rest at t=1 and t=3 seconds.

(c)By second derivative

$$\frac{d^2v}{dt^2} = 6t - 12$$
; $\frac{d^2v}{dt^2}|t = 3$ = 18-12 = 6 > 0 minimum point.

$$\frac{d^2v}{dt^2}|t=1 = 6-12 < 0$$
 maximum point

When
$$t=3$$
, $s=0$ when $t=0$, $s=0$
When $t=1$, $s=4$ when $s=0$, $t=3$
When $t=1$, $s=4$ (distance)

1

Between t=0, and t=1, the velocity is positive and the object moves from position s=0 to $s=1(1-3)^2=4$.

Between t=1 and t=3, the velocity is negative and the object moves from position s=4 to position s=0.

Therefore the distance moved by the object between t=0 and t=2 will be given by 4(the positive difference between values of s at time t=1, t=2 respectively).

when
$$t = 1, s = 4$$

when $t = 2, s = 2$: total distance is $(4+2)$ =6metres.

Acceleration (a) at a time t is given by $a = \frac{dv}{dt}$.

Hence to determine the acceleration at time t differentiate v with respect to t.

Examples:

1. A particle is moving in a straight line and has its displacement s metres from the origin after t seconds given by $s = e^{-\sqrt{3}t} \sin t$. Determine its displacement, velocity and acceleration when $t = \frac{\pi}{2}$ and also the smallest positive value t for which the particle is at rest (i.e. v=0).

Solution:

$$s = e^{-\sqrt{3}t} \sin t; \quad v = \frac{ds}{dt} = \cos t e^{-\sqrt{3}t} + \left(-\sqrt{3}\right) e^{-\sqrt{3}t} \sin t$$

$$a = \frac{dv}{dt} = -\sqrt{3}e^{-\sqrt{3}t} \cos t + \left(-\sin t\right) e^{-\sqrt{3}t} + \left(-\sqrt{3}\right) \left(-\sqrt{3}\right) e^{-\sqrt{3}t} \sin t + \cos t \left(-\sqrt{3}\right) e^{-\sqrt{3}t}$$

$$= -\sqrt{3}e^{-\sqrt{3}t} \cos t - \sin t e^{-\sqrt{3}t} + 3e^{-\sqrt{3}t} \sin t + \cos t \left(-\sqrt{3}\right) e^{-\sqrt{3}t}$$

$$a = -2\sqrt{3}e^{-\sqrt{3}t} \cos t + 2e^{-\sqrt{3}t} \sin t$$

$$\therefore \text{ at } t = \frac{\pi}{2}, \quad v = \frac{ds}{dt} \left| t = \frac{\pi}{2} = -\sqrt{3}e^{-\sqrt{3}\frac{\pi}{2}} \sin \frac{\pi}{2} + e^{-\sqrt{3}\frac{\pi}{2}} \cos \frac{\pi}{2} = -\sqrt{3}e^{-\sqrt{3}\frac{\pi}{2}}$$

$$a = \frac{dv}{dt} \left| t = \frac{\pi}{2} = 2e^{-\sqrt{3}\frac{\pi}{2}} - 2\sqrt{3}e^{-\sqrt{3}\frac{\pi}{2}} \cdot 0 = 2e^{-\sqrt{3}\frac{\pi}{2}}$$

The displacement at $t = \frac{\pi}{2}$ is given by $s = e^{-\sqrt{3}t} \sin t$; $s = e^{-\sqrt{3}\frac{\pi}{2}} \sin \frac{\pi}{2}$; $s = e^{-\sqrt{3}\frac{\pi}{2}}$ metres.

When the particle at rest
$$v=0$$
; $\therefore v = -\sqrt{3}e^{-\sqrt{3}t} \sin t + e^{-\sqrt{3}t} \cos t = 0$
 $v = e^{-\sqrt{3}t} \left(-\sqrt{3} \sin t + \cos t \right) = 0$; $e^{-\sqrt{3}t} > 0$ for all t
 $-\sqrt{3} \sin t + \cos t = 0$; $-\sqrt{3} \sin t = -\cos t$
 $\frac{\sin t}{\cos t} = \frac{1}{\sqrt{3}}$; $\tan t = \frac{1}{\sqrt{3}}$; $t = \tan^{-1} \left(\frac{1}{\sqrt{3}} \right) = 30^{\circ}, 210^{\circ}$; \therefore the smallest is $t = 30^{\circ}$.

2. A distance time graph is represented by the equation $s = 2t^3 - 2t^2 - 3t$. Evaluate (a) The velocity at time t

(a) The velocity at time *t* (b) The acceleration at time *t*

(c) Show that the minimum distance over attained occurs went $t = \frac{2 + \sqrt{22}}{2}$

Solution:

(a)
$$v = \frac{ds}{dt} = 6t^2 - 4t - 3$$

(b)
$$a = \frac{dv}{dt} = 12t - 4$$

(c) for minimum and maximum distance v=0

$$v = 6t^{2} - 4t - 3 = 0; \quad t = \frac{4 \pm \sqrt{16 + 72}}{12} = \frac{4 \pm \sqrt{88}}{12} = \frac{4 \pm 2\sqrt{22}}{12}; \quad t = \frac{2 \pm \sqrt{22}}{6}$$
$$\therefore t = \frac{2 + \sqrt{22}}{r} \text{ or } t = \frac{2 - \sqrt{22}}{6}$$

Using the second derivation test

$$a = \frac{dv}{dt} = 12t - 4; \quad \frac{dv}{dt} \left| t = \frac{2 - \sqrt{22}}{6} \right| = 12 \left(\frac{2 - \sqrt{22}}{6} \right) - 4 = -9 \cdot 4 < 0 \text{ maximum}$$

$$\frac{dv}{dt} \left| t = \frac{2 + \sqrt{22}}{6} \right| = 12 \left(\frac{2 + \sqrt{22}}{6} \right) - 4 = 9 \cdot 4 > 0 \text{ minimum}$$

Exercise

- 1. A particle moves along a straight line in such a way that after t seconds, its velocity is $v \text{ms}^{-1}$, where $v = t^2 - t + 2$. Find the acceleration the particle(a) after 2 seconds(b) after $\frac{1}{2}$ seconds.
- 2. The distance s metres that a particle has gone in t seconds is given by $s = 5t + 15t^2 t^3$. Find the velocity and

(b)6seconds . When is the acceleration zero? acceleration after (a)3seconds

- 3. After t seconds a particle has gone s metres where $s = t^3 6t^2 + 9t + 5$.
- (a) After how many seconds is its velocity zero?
- (b) When is its acceleration zero?
- (c)Find its velocity and acceleration (i)initially (ii)after 4seconds

In summary, the motion of a particle p along a straight line is completely described by the equations s = f(t), where t > 0 is the time and s is the distance of p from a fixed point 0 in its path.

The velocity of p at time t is $v = \frac{ds}{dt}$.

If v=0, p is instantaneously at rest. Acceleration of p at time t is $a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$

3