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Limits 

The concept of limits of a function is one of the fundamental ideas that distinguishes Calculus 

from other areas of mathematics e.g. Algebra or Geometry. 

If f(x) becomes arbitrarily close to a single number L as x approaches a from either side, then the 

limit of f(x) as x approaches a is L written as ( ) Lxf
ax

=
→

lim
. 

Consider a function y=f(x) 

( ) Lxf
ax

=
→

lim
means the limit of f(x) as x approaches a is equal to a number L i.e. as x gets 

closer and closer to  a  ( ax ≠ ),  f(x) gets closer and closer to L. 

Example 21: )(
2

lim
 Find.)(Let 

2
xf

x
xxf

→
=  

Solution: 

        ( ) 42
2

lim

2

lim
22 ==

→
=

→
x

x
xf

x  

Example 22: Let f(x) = 5x – 3. Find 35
2

lim
−

→
x

x
 

Solution: 

( ) 732535
2

lim
=−×=−

→
x

x  

Example 23:  Let   

 x
xf

1
)( =

.  

Find 

 

xx

1lim

∞→
 

Solution: 

( )undefined
xx

∞=
→

1

0

lim
 

 

Properties of limits 

1. kk
ax

=
→

lim
 

2. ( ) ( ) ( ) ( )xg
ax

xf
ax

xgxf
ax →

+
→

=+
→

limlim
][

lim
 

3. ( ) ( ) ( ) ( )xg
ax

xf
ax

xgxf
ax →

×
→

=×
→

limlimlim
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4. 
( )
( )

( )

( )
( ) 0lim

lim

lim
lim ≠

→

= →

→
xgthatprovided

xg
ax

xf

xg

xf ax

ax
 

( ) ( )

2

1

2

1

limlim
.

lim

lim 5.








→=
→

→=

ax
x

x
ax

ge

xf
axxf n

n

 

Example 24:  

3lim4limlim34lim
55

2

5

2

5 →→→→
+−

=
+−

xxxx
xxxx

 

                          
8

32025
35452

=
+−=
+×−=

 

Example 25:  

 
17

11

725

523

75lim

53lim

75

53
lim

2

2

2
=

+×
+×

=
+

+
=

+
+

→

→

→ x

x

x

x

x

x

x

 

Example 26: 

 

2lim

4lim

2

4
lim

2

2

2

2

2 −

−
≠

−

−

→

→

→ x

x

x

x

x

x

x  
02lim  since

2
=−

→
x

x  

 

( )( )
( )

( ) 42
2

lim

2

22

2

lim

2

4

2

lim
Hence

2

=+
→

=
−

−+
→

=
−
−

→
x

xx

xx

xx

x

x
 

Example 27:  

232
2

264
8

16
4

838

16
lim4lim

3limlim

16
4

3
lim

3

2

88

8

3

2

8
3

2

8

+=

+
=

−

+
=

−

+
=

−

+

→→

→→

→

x

xx

x

xx

xx

xx

x

 

Example 28:  
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2

1

06

03

8
lim

6
lim

5lim
3

lim

8
6

5
3

lim

8
6

53
lim

86

53lim

=
−
+

=

∞→
−

∞→

∞→
+

∞→

−

+

∞→
=

−

+

∞→
=

−
+

∞→

xx

xxx

x

x

x

x

xx

x

xx

x

x

 

Example 29:

   52

4lim
3

2

−
−

∞→ x

xx

x         

Divide by the highest power of x. 

    0
2

0

02

00

5
2

14
lim

3

2

==
−

−
=



















−

−

∞→
x

xx

x

 

Example 30:

 

3

1

6
3

lim

2
1

lim

6
3

2
1

lim

63

2
1

lim

63

2
1

lim

63

2lim

2

2

2

1

2

2

2

2

=








 −
∞→

+
∞→

=








 −








 +

=

−








 +

∞→
=

−








 +
∞→

=
−
+

∞→

xx

xx

x
x

x
x

x

x
x

x

x

x
x

x

x

x

x

 

Example 31:
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( )( )

( )

3
111

1
1

lim

1

11

1

lim

3
1

1

1

lim

2
2

3

=
++=

++
→

=
−

−++
→

=
−
−

→

xx
xx

xxx

x

x

x

x

 

Example 32: 

 

( )( )

1244442
2

lim

2

422

2

lim

0

0

2

8

2

lim

2

2

3

=++=++
→

−
++−

→

=








−
−

→

xx
x

x

xxx

x

x

x

x

 

 

Exercise 3 

1. 
x

x

x 210

15lim

+
+

∞→
 

2. 
5

54

5

lim 2

−
−−

→ x

xx

x
 

3. 
5

25

5

lim 2

−
−

→ x

x

x
 

4. 
x

x

x

22

0

lim −+
→

 

5.The domain of the functions ( )
5

x
xf = and ( ) xxg −= 7 is ℜ .Write down as simply as possible. 

a. ( )xf 1−
   b. ( )xg 1−

   c. ( )xfg    d. ( ) ( )xfg
1−

 

 

Solutions to Exercise 3 

 

1. 
2

1
2

2
10

1
5lim

210

15lim
=

+

+

∞→
=

+
+

∞→
x

x

xx

x

x
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( )( )
( )

2lim lim 5 14 5
2. 

5 55 5
lim

1 6
5

x xx x

x xx x

x
x

− +− −
=

→ →− −

= + =
→

 

     Or ( ) 6452
1

42

5

lim
=−=

−
→

x

x
 

3. 
( )( )

( )
lim lim 5 52 25

10
5 55 5

x x

x xx x

+ −× −
= =

→ →− −
 

 

     Or ( ) 1052
1

2

5

lim
==

→
x

x  
 

( )

( )

lim 2 2 2 2
4.  

0 2 2
2 2

2 2

1

2 22 2

lim 1 1 1 2 2 2 2 2

0 4 2 42 2 2 2 2 2 2 2

x x

x x x
x

x x

x

xx x

x x

− − − +
×

→ − +
− −

=
+ −
− −

= =
+ −+ −

− − −
= = × = =

→ ×+ − +

 

 
'L Hospital Rule 

( )
( )

∞=
→

or
xg

xf

ax 0

0lim
 

 

Then 
( )
( )

( )
( )

'

'

lim limf x f x

x a x ag x g x
=

→ →
 

e.g 

1. 
1

3

1

lim

1

1

1

lim 23 x

xx

x

x →
=

−
−

→
 

                              
3

13
=

×=  

 

2. 12
1

3

2

lim

0

0

2

8

2

lim 23

=
→

=
−
−

→
x

xx

x

x  
 

 

3. 
3

2

3

sin

0

lim

3

12cos

0

lim −
=

−
→

=
−−

→
x

xx

xx

x
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Continuity 

Continuity at a point. 

A function is considered continous if the following conditions are met. 

1. ( )f a  is defined. 

2. ( )lim
x a

f x
→

exists. 

3. ( ) ( )lim
x a

f x f a
→

=  

 

Otherwise it is discontinuous. 

Example 33: Show that ( )
2 4

2

x
f x

x

−
=

−
is not continous at x=2 

Solution: 

  Condition 1:  ( ) 4 4 0
2

2 2 0
f

−
= =

−
, which is  undefined 

  

( )
( )( )

2lim lim 4
Condition 2: 

2 2 2
lim 2 2

2 2
lim

2 4
2

x
f x

x x x
x x

x x

x
x

−
=

→ → −
+ −

=
→ −

= + =
→

 

Therefore, ( )
2

lim
x

f x
→

exists. 

Condition 3: ( )
2

lim 4, but (2) is undefined
x

f x f
→

=  

   ( ) ( )2
2

lim
fxf

x
≠

→
∴

 

Therefore f(x) is not continous at x=2 

Note: It is possible to redefine f(x) to make it continous at x=2, as follows:

 

 

( )

2
4

, 2
2

4, 2

x
x

x
f x

x

 −
≠ −

= 

 =

 

  

( ) ( )

x 2

lim
( ) 4,  i.e.lim ,  we redefine f(x) so that

2

lim
2 4

2

f x exists
x

f x
f

x

→
=

→

= =
→

 

Example of a continous function. 

 

 X 
2xy =  
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Example of a discontinous function. 

 

                   

 

 

 

 

 

 

 

 

 

 

 

 

Remarks 

1.Polynomials are always continous functions. 

      e.g ( ) 122 +−= xxxf  at c since 

Condition 1: ( )cf  is defined i.e. ( ) 2 2 1f c c c= − +  

Condition 2:     
( ) 2 2

limlim
2 1 2 1

f x
x x c x

x cx c
= − + = − +

→→
 exists. 

Condition3:    
( ) ( )2lim

2 1
f x

c c f c
x c

= − + =
→

 

 

2 .Discontinuity means a function breaks at a particular point. 

Example 34: Discuss the continuity of  ( )xf  if 

( )

3 27
; 3

3

27; 3

x
x

x
f x

x

 +
≠ − +

= 
= −



 

      Solution:Condition 1: f(-3)=27, therefore f(x) is defined at x=3 

( )( )
( )

3
2

2

27 3 3 9limlim
Condition 2: 3

3 3
3

lim
3 9

3
9 9 9
27

x x x x
x

x x
x

x x
x

+ + − +
=+

→ − +
→ −

= − +
→ −

= + +
=  

Condition 3:      
( ) ( )

lim
3 27

3

f x
f

x
= − =

→ −  

is continous. 
Example 35:Determine whether or not the function below is continous at x=1

 

0 

x
y

1
=  

( )xf∴
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( )

2
1

1
1

2 1

x
if x

x

f x if x

 −
≠ −


= =


 

Solution:  

      Condition 1: ( )1 2f =  hence ( )1f  is defined. 

      Condition 2: 
( ) ( )( )

( )
2

1

11

1

lim

1

1

1

lim

1

lim 2

=
−

−+
→

=
−
−

→
=

→ x

xx

xx

x

xx

xf

  

Therefore 
( )lim

1

f x

x →
exists.

. 

      

Condition3: ( ) ( )
2lim 1

lim 1
1 1

x
f x f

x x

−
=

→ −
, hence ( )xf is continous at x=1 

Example 36: .Discuss the continuity of ( )xf if 

( )

2
4

, 2
2

3 2

x
x

x
f x

x

 −
≠ −= 

=


 

Solution: 

Condition 1: f(2) = 3, so f(x) is defined at x=2 

Condition 2:

 

( )

( )( )
( )

2
2

22

2

lim
2

4

2

lim

2

lim 2

=
−

−+
→

=

−
−

→
=

→

x

xx

x

x

x

xx

xf

    

hence ( )xflim exists. 

Condition 3: ( ) 32 =f  
( )lim

but 2
2

f x

x
=

→  

( )lim
(2)

2

f x
f

x
∴ ≠

→  

Thus f(x) is discontinuous 

at 2=x  
Exercise 

Define the continuity of a real valued function ( )xf

 

at a point x=a. Hence determine if the 

following function is 

continous at x=1.
 

( )

3
1

, 1
1

3, 1

x
x

x
f x

x

 −
≠ −= 

=


 

( )xf∴
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Example37:Show that ( ) 1

2
f x

x
=

−  

for is

  

2x ≠ is not continous at x =2. 

Solution:
                                          

 

 

                                 

 

 

                                           

                                           2    

( ) 1

2
f x

x
=

−
 

 

 

 

 

Because f is not defined at the point

 

2x = it is not continous there. Moreover

 

f has what might 

be

 

called an infinite discontinuity at

 

2x =
 Combinations of continous Functions. 

Any sum or product of continous functions is continous. That is, if the functions f and g are 

continous at x a= , then so are f g+ and f g⋅ e.g if f and g are continous at x a= , then 

( ) ( ) ( ) ( ) ( ) ( )lim lim lim
x a x a x a

f x g x f x g x f a g a
→ → →

 + = + = +   

Example 38: ( )f x x=
  

is continous everywhere,i.e. 

 ( )y f x=  

 

 

 

 

 

 

 

 

It follows that the cubic polynomial function ( ) 3 23 1f x x x= − + is continous everywhere. More 

generally every polynomial function ( ) 1

1 1 0

n n

n np x b x b x b x b−
−= + + + +…

 
is continous at each 

point of the real line. 

If ( )p x and ( )q x are polynomials, then the quotient law for limits and the continuity of 

polynomials imply that 

( )
( )

( )
( )

( )
( )

lim
lim

lim
x a

x a

x a

p xp x p a

q x q x q a
→

→
→

= =
   

provided ( ) 0q a ≠ . Thus every rational function ( ) ( )
( )

p x
f x

q x
= is 

continous wherever it is defined. 
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The point x a= where the function f is discontinuous is called a removable discontinuity of 

f provided that there exists a function F such that ( ) ( )F x f x= for all x a≠ in the domain of f , 

and this new function F is continous at x a= . 

Example 39: Suppose that 
2

2
( )

3 2

x
f x

x x

−
=

− +
 

( )( )

( )
( )( )

2
3 2 1 2

2

1 2

x x x x

x
f x

x x

− + = − −

−
∴ =

− −

 

This shows that f is not defined at 1x = and ( )2x f x= ⇒ is continous except at these points.  

But ( )
( )( )

2 1

1 2 1

x
f x

x x x

−
= =

− − −
 . The new function ( ) 1

1
F x

x
=

−
 is continous at 2x = , where 

( )2 1F = . Therefore f has a removable discontinuity at 2x = ; the discontinuity at 1x = is not 

removable.

 
 y=F(x) 

 

  

   1 

  

 

 

 

 

 

 

 

 

 

 

Composition of Continous Functions 

Let ( ) ( )( )h x f g x= where f and g are continous functions.The composition of two continous 

functions is continous or more precisely, if g is continous at a and f is continous at ( )g a , then 

f go is continous at a  where ( )( )f g f g x=o . 

Proof: The continuity of g at a means that ( ) ( )lim
x a

g x g a
→

= ,and the continuity of f  at ( )g a
 

implies      that ( ) ( )
( ) ( )
lim ( ) ( )

g x g a
f g x f g a

→
=  

i.e. ( ) ( )( ) ( )( )lim ( ) lim
x a x a

f g x f g x f g a
→ →

= =  

Example 40: Show that the function ( )
2

3

2

7

2 2

x
f x

x x

− =  + + 
is continous on the whole real line. 

Solution: Consider the denominator 
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       ( )22
2 2 1 1 0x x x+ + = + + >

 
for all value of x. Hence the rational function 

     ( ) 2

7

2 2

x
r x

x x

−
=

+ +   
is defined and continous everywhere. Thus ( ) ( )( )

1
2 3

f x r x =   is 

continous everywhere. 

One-sided limits 

Let S ⊆¡ and :f S → ¡ be a function. If for every ( ),x S f x L∈ → as x a→ and 

x a> always, then we say that x a→ from the right and write x a
+

→  or we say ( )lim
x a

f x L
+

→

= . 

Similarly, if ( )f x L→ as x a→ and   x a<  always, we say that x a→  from the left and write 

x a
−

→  or we say  lim
x a

L
−

→

= . 

The limits lim
x a

+
→

( )f x and ( )lim
x a

f x
−

→

are called one-sided limits of f and a 

Remarks 

1. ( )lim
x a

f x L
→

=
    

iff     ( ) ( )lim lim
x a x a

f x f x L
+ −

→ →

= =  

i.e the limit of a function ( )f x exists if the right hand side limit = left-hand side limit. 

2. If ( )lim lim
x a x a

f x
+ −

→ →

≠ , then ( )lim
x a

f x
→

does not exist. 

Example 41: Given  ( )
1

x
f x

x
=

−
 ,Find 

1

lim
x

+
→

( )f x  and 
1

lim
x

−
→

( )f x   

Solution: 

         

0 1

2
 

1 1
1

2
 

2 

0 -1 ∞  3 2 

 

Also consider the graph of ( ) 1

1
f x

x
=

−
 y 

 

 

  

 

                                                                                        

                                                                                            0        1                              x 
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( )
( )

1
1

1

lim 1

lim 1
x

x

f x if x

f x if x

−

+

→

→

= −∞ <

−∞ >
 

( )
1

lim
x

f x
→

∴ = ∞
 

( )
1

lim
x

f x
→

⇒ does not exist.
 

Example 42: Consider the following graph y 

( ) 2

1
y f x

x
= =                                 

 
2

1
y

x
=  

 

  

                                                                                                                      x 

 

 

         ( )
0

lim
x

f x
+

→

= ∞  ( )
0

lim
x

f x
+

→

= ∞  

Example 43: Draw the graph of

 

 
( )

1, 1

, 1 1

1, 1

if x

f x x if x

if x

=


= − − < <

− >

 

 Solution:                 4   y 

                                  3 

                                  2  

 -3 -2 -1      1    2    3 x 

                                -1 

                                -2 

                                -3 

 

Example 44: Evaluate ( )
2

lim 1 2
x

x
+

→

+ − and ( )
2

lim 1 2
x

x
−

→

+ −
 

Solution: 

( )
2

lim 1 2
x

x
+

→

+ −
 

2 2

lim1 lim 2

1 0 1

x x

x
+ +

→ →

= + −

= + =
 

On the other hand, ( )
2

lim 1 2
x

x
−

→

+ − does not exist (is not real). 
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Definition:

 

A function f is said to be continous from the right at x p= if ( ) ( )lim
x p

f x f p
+→

= . 

We say that f is continous from the left at q if ( ) ( )lim
x p

f x f q
−→

=  

A function is said to be continous if its continous from the right and from the left i.e 

( ) ( ) ( )lim lim
x p x p

f x f x f p
+ −→ →

= =  

Example 45: Discuss the continuity of ( )
1 0

sin

1 0

if x

g x x

if x

+ ≥


= = 
− <

 

Solution:

 ( )
0

lim 1
x

g x
−

→

= − and ( )
0

lim 1
x

g x
+

→

= −
 
.Therefore Its left-hand and right-hand limits at 0x = are 

unequal 

Thus

 
( )g x has no limit as

 

0x → . Hence the function g is not continous at 0x = , it has what 

might be called a finite jump discontinuity there. (see the graph below) 

 

                               y

 

                                   (0,1) 

 

  

 

 

                                                                                                 x 

 

                                    

 

               

                                               (0,-1) (not on the graph) 

 

 

 

Example 46:Discuss the continuity of ( )

sin
0

0 0

x
if x

x
h x

if x

 ≠
= 

 =

 

Solution: 

( )
0 0

sin
lim lim 1
x x

x
h x

x→ →
= =  whereas ( )0 0h =  

⇒  the limit and the value of h  at 0x = are not equal. 

Thus the function h is not continous there (see the graph below) 

                                   y=h(x) 

 1 
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Remark: 

Another way of finding out if functions are continous at x = a is by: 

         1. Checking if ( )f a is defined. 

        2. Checking if ( ) ( )lim lim
x a x a

f x f x
+ −

→ →

= and exist and are equal. 

        3. Ensuring that both are equal to ( )f a . 

Example 47: Find the value of c such that  ( )
2

0

4 0

x c if x

f x

x if x

+ <


= 
 − ≥

is continous at x = 0. 

Solution:  

Condition 1: Is ( )f x defined at 0x = ? 

Yes, 
( ) 2

2

4

(0) 4 0 4

f x x

f

= −
∴ = − =  

Condition 2: Does ( )
0

lim
x

f x
→

exist? In other words, 

 Does 
0

lim ( )
x

f x
−

→

exist? 

        Yes, 
0

lim ( )
x

f x
−

→

= 0 + c = c 

Does 
0

lim
x

+
→

exist? 

          Yes, ( ) 2 2

0

lim 4 4 0 4
x

f x x
+

→

= − = − =  

      (c ) Is 

 
( ) ( )

0 0

lim lim
x x

f x f x
− +

→ →

= .  

For them to be equal,  ( ) ( )
0 0

lim lim 4
x x

f x f x c
− +

→ →

= ⇒ =  

Thus, ( )
0

lim
x

f x
→

exists, i.e.  ( )
0

lim 4
x

f x
→

=  

Condition 3:  Is 
0

lim ( )
x

f x
→

= f(0) 

Yes, 
0

lim ( )
x

f x
→

= f(0) = 4 

Conclusion: for f(x) to be continous at x = 0, then c = 4. 

Exercise: Evaluate 

1.
 

2

3

2
lim

1x

x x

x→

−
+     2. 2

2
lim

2 1x

x

x x→−∞

−
+ +     3. 2

6

6
lim

36x

y

y+
→

+
−    

4. 2

2
lim

7 6x

y

y→+∞

−

+
   

5. 3

lim
3x

x

x+→ −    6. 

2
2

lim
4x

x

x−
→ −     

The point (0,0)is on the graph, the 

point (0,1) is not. 
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7.  
4

4
lim

2y

y

y→

−

−
   

8. 
2

5 2
lim

3x

x

x→∞

−
+    

9. 
2

limsin( )
x

x

xπ π→ +
 

10. For the following problems find the points where given function is not defined and therefore 

not continous. For each such point a, tell whether this discontinuity is removable. 

a) ( )
( )3

3

x
f x

x
=

+
 

b) ( ) 2

2

4

x
f x

x

−
=

−
 

c) ( ) 1

1
f x

x
=

−
                 d) ( ) 17

17

x
f x

x

−
=

−
 

e) ( )
2

0

0

x if x

f x

x if x

− <


= 

 >                 

     f)

 

( )

21 0

sin
0

x if x

f x
x

if x
x

 + <


= 
 >

 

11. For the following problems find a value of the constant c so that the function ( )f x is 

continous for all x. 

a) ( )
2

0

4 0

x c if x

f x

x if x

+ <


= 
 − ≥

           Answer: c=4      b) ( )
2 3

2 3

x c if x

f x

c x if x

+ ≤


= 
 − >

         Answer: 

c=9 

 

c) ( )
( )

2 2

2

0

2 0

c x if x

f x

x c if x

 − <


= 
 − ≥

       Answer:  c=0    d) ( )

3 3

sin

c x if x

f x

c x if x

π

π

 − ≤


= 
 >

          

Answer: c π=  
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