StuDocu.com

Pdf SMA 104 Lecture 2(Limits AND Continuity)

Project Management (University of Nairobi)

Limits

The concept of limits of a function is one of the fundamental ideas that distinguishes Calculus from other areas of mathematics e.g. Algebra or Geometry.
If $f(x)$ becomes arbitrarily close to a single number L as x approaches a from either side, then the limit of $f(x)$ as x approaches a is L written as $\lim _{x \rightarrow a} f(x)=L$.
Consider a function $y=f(x)$
lim
$\lim _{x \rightarrow a} f(x)=L$ means the limit of $f(x)$ as x approaches a is equal to a number L i.e. as x gets
closer and closer to $a(x \neq a), f(x)$ gets closer and closer to L.
Example 21: Let $f(x)=x^{2}$. Find $\lim _{x \rightarrow 2} f(x)$
Solution:

$$
\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} x^{2}=2^{2}=4
$$

Example 22: Let $f(x)=5 x-3$. Find $\lim _{x \rightarrow 2} 5 x-3$
Solution:
$\lim _{x \rightarrow 2} 5 x-3=(5 \times 2-3)=7$
Example 23: Let
$f(x)=\frac{1}{x}$.
Find
$\lim \frac{1}{x}$
$x \rightarrow \infty x$
Solution:
$\lim _{x \rightarrow 0} \frac{1}{x}=\infty \quad$ (undefined)

Properties of limits

1. $\lim _{x \rightarrow a} k=k$
2. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a} f(x) \times g(x)=\lim _{x \rightarrow a} f(x) \times \lim _{x \rightarrow a} g(x)$
4. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)} \quad$ provided that $\lim g(x) \neq 0$
5. $\lim \sqrt[n]{f(x)}=\sqrt[n]{x \rightarrow a} \lim _{x \rightarrow} f(x)$
e.g $\lim _{x \rightarrow a} x^{\frac{1}{2}}=\binom{\lim x}{x \rightarrow a}^{\frac{1}{2}}$

Example 24:

$\lim _{x \rightarrow 5} x^{2}-4 x+3 \lim _{x \rightarrow 5} x^{2}-\lim _{x \rightarrow 5} 4 x+\lim _{x \rightarrow 5} 3$

$$
\begin{aligned}
& =5^{2}-4 \times 5+3 \\
& =25-20+3 \\
& =8
\end{aligned}
$$

Example 25:

$\lim _{x \rightarrow 2} \frac{3 x+5}{5 x+7}=\frac{\lim _{x \rightarrow 2} 3 x+5}{\lim _{x \rightarrow 2} 5 x+7}=\frac{3 \times 2+5}{5 \times 2+7}=\frac{11}{17}$

Example 26:

$\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} \neq \frac{\lim _{x \rightarrow 2} x^{2}-4}{\lim _{x \rightarrow 2} x-2} \quad \underset{x \rightarrow 2}{\text { since }} \lim x-2=0$
Hence $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x+2)(x-2)}{(x-2)}=\lim _{x \rightarrow 2}(x+2)=4$

Example 27:

$$
\begin{aligned}
\lim _{x \rightarrow 8} \frac{x^{\frac{2}{3}}+3 \sqrt{x}}{4-\frac{16}{x}} & =\frac{\lim _{x \rightarrow 8} x^{\frac{2}{3}}+\lim _{x \rightarrow 8} 3 \sqrt{x}}{\lim _{x \rightarrow 8} 4-\lim _{x \rightarrow 8} \frac{16}{x}} \\
& =\frac{8^{\frac{2}{3}}+3 \sqrt{8}}{4-\frac{16}{8}} \\
& =\frac{4+6 \sqrt{2}}{2} \\
& =2+3 \sqrt{2}
\end{aligned}
$$

Example 28:

$\lim _{x \rightarrow \infty} \frac{3 x+5}{6 x-8}=\lim _{x \rightarrow \infty} \frac{\frac{3 x}{x}+\frac{5}{x}}{6-\frac{8}{x}}=\lim _{x \rightarrow \infty} \frac{3+\frac{5}{x}}{6-\frac{8}{x}}$

$$
\frac{\lim _{x \rightarrow \infty} 3+\lim _{x \rightarrow \infty} \frac{5}{x}}{\lim _{x \rightarrow \infty} 6-\lim _{x \rightarrow \infty} 8}=\frac{3+0}{6-0}=\frac{1}{2}
$$

Example 29: $\lim _{x \rightarrow \infty} \frac{4 x^{2}-x}{2 x^{3}-5} \quad$ Divide by the highest power of x.

$$
\lim _{x \rightarrow \infty}\left(\frac{\frac{4}{x}-\frac{1}{x^{2}}}{2-\frac{5}{x^{3}}}\right)=\frac{0-0}{2-0}=\frac{0}{2}=0
$$

Example 30:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}+2}}{3 x-6} & =\frac{\lim _{x \rightarrow \infty} \sqrt{x^{2}\left(1+\frac{2}{x^{2}}\right)}}{3 x-6} \\
& =\lim _{x \rightarrow \infty} \frac{x\left(1+\frac{2}{x^{2}}\right)^{\frac{1}{2}}}{3 x-6} \\
& =\lim _{x \rightarrow \sqrt{\left(1+\frac{2}{x^{2}}\right)}}^{x\left(3-\frac{6}{x}\right)} \\
= & \frac{x \rightarrow \infty \sqrt{1+\frac{2}{x^{2}}}}{\lim } \\
= & \frac{1}{3}\left(3-\frac{6}{x}\right)
\end{aligned}
$$

Example 31:

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}=3 \\
& \lim _{x \rightarrow 1} \frac{\left(x^{2}+x+1\right)(x-1)}{(x-1)}=\lim _{x \rightarrow 1} x^{2}+x+1 \\
& =3
\end{aligned}
$$

Example 32:

$$
\begin{aligned}
& \lim _{x \rightarrow 2}\left(\frac{x^{3}-8}{x-2}\right)=\frac{0}{0} \\
& \lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+4\right)}{x-2} \\
& \quad \lim _{x \rightarrow 2} x^{2}+2 x+4=4+4+4=12
\end{aligned}
$$

Exercise 3

1. $\lim _{x \rightarrow \infty} \frac{5 x+1}{10+2 x}$
2. $\lim _{x \rightarrow 5} \frac{x^{2}-4 x-5}{x-5}$
3. $\lim _{x \rightarrow 5} \frac{x^{2}-25}{x-5}$
4. $\lim _{x \rightarrow 0} \frac{\sqrt{2+x}-\sqrt{2}}{x}$
5.The domain of the functions $f(x)=\frac{x}{5}$ and $g(x)=7-x$ is \mathfrak{R}.Write down as simply as possible.
a. $f^{-1}(x)$
b. $g^{-1}(x)$
c. $f g(x)$
d. $(f g)^{-1}(x)$

Solutions to Exercise 3

1. $\lim _{x \rightarrow \infty} \frac{5 x+1}{10+2 x}=\lim _{x \rightarrow \infty} \frac{5+\frac{1}{x}}{\frac{10}{x}+2}=2 \frac{1}{2}$
2. $\lim _{x \rightarrow 5} \frac{x^{2}-4 x-5}{x-5}=\lim _{x \rightarrow 5} \frac{(x-5)(x+1)}{(x-5)}$

$$
=\lim _{x \rightarrow 5} x+1=6
$$

Or $\lim _{x \rightarrow 5} \frac{2 x-4}{1}=2(5)-4=6$
3. $\lim _{x \rightarrow 5} \frac{\times 2-25}{x-5}=\lim _{x \rightarrow 5} \frac{(x+5)(x-5)}{(x-5)}=10$

$$
\text { Or } \lim _{x \rightarrow 5} \frac{2 x}{1}=2(5)=10
$$

4. $\lim _{x \rightarrow 0} \frac{\sqrt{2-x}-\sqrt{2}}{x} \times \frac{\sqrt{2-x}+\sqrt{2}}{\sqrt{2}-x+\sqrt{2}}$

$$
=\frac{2-x-2}{x(\sqrt{2}+\sqrt{2-x})}
$$

$$
=\frac{-x}{x(\sqrt{2}+\sqrt{2-x})}=\frac{-1}{\sqrt{2}+\sqrt{2-x}}
$$

$\lim _{x \rightarrow 0} \frac{-1}{\sqrt{2}+\sqrt{2-x}}=\frac{-1}{\sqrt{2}+\sqrt{2}}=\frac{-1}{2 \sqrt{2}} \times \frac{2 \sqrt{2}}{2 \sqrt{2}}=\frac{2 \sqrt{2}}{4 \times 2}=\frac{\sqrt{2}}{4}$

L' Hospital Rule

$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{0}{0}$ or ∞
Then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
e.g

1. $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}=\lim _{x \rightarrow 1} \frac{3 x^{2}}{1}$

$$
\begin{aligned}
& =3 \times 1 \\
& =3
\end{aligned}
$$

2. $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}=\frac{0}{0} \lim _{x \rightarrow 2} \frac{3 x^{2}}{1}=12$
3. $\lim _{x \rightarrow 0} \frac{\cos x-2 x-1}{3 x}=\lim _{x \rightarrow 0} \frac{-\sin x}{3}=\frac{-2}{3}$

Continuity

Continuity at a point.
A function is considered continous if the following conditions are met.

1. $f(a)$ is defined.
2. $\lim _{x \rightarrow a} f(x)$ exists.
3. $\lim _{x \rightarrow a} f(x)=f(a)$

Otherwise it is discontinuous.
Example 33: Show that $f(x)=\frac{x^{2}-4}{x-2}$ is not continous at $\mathrm{x}=2$
Solution:
Condition 1: $f(2)=\frac{4-4}{2-2}=\frac{0}{0}$, which is undefined
Condition 2: $\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 2} \frac{(x+2)(x-2)}{x-2} \\
& =\lim _{x \rightarrow 2} x+2=4
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow 2} f(x)$ exists.
Condition 3: $\lim _{x \rightarrow 2} f(x)=4$, but $f(2)$ is undefined
$\therefore \lim _{x \rightarrow 2} f(x) \neq f(2)$
Therefore $\mathrm{f}(\mathrm{x})$ is not continous at $\mathrm{x}=2$
Note: It is possible to redefine $f(x)$ to make it continous at $x=2$, as follows:
$f(x)=\left\{\begin{array}{l}\frac{x^{2}-4}{x-2}, x \neq 2 \\ 4, \quad x=2\end{array}\right.$
$\lim _{x \rightarrow 2} f(x)=4$, i.e. $\lim _{x \rightarrow 2}$ exists, we redefine $\mathrm{f}(\mathrm{x})$ so that
$\lim _{x \rightarrow 2} f(x)=f(2)=4$
Example of a continous function.
Downloaded by Teacher Chepkong'a (fredcheps@gmail.com)

Example of a discontinous function.

Remarks
1.Polynomials are always continous functions.
e.g $f(x)=x^{2}-2 x+1$ at c since

Condition 1: $f(c)$ is defined i.e. $f(c)=c^{2}-2 c+1$
Condition 2: $\quad \begin{aligned} & \lim f(x) \\ & x \rightarrow c\end{aligned}=\lim _{x \rightarrow c} x^{2}-2 x+1=c^{2}-2 x+1$ exists.
Condition3: $\quad \begin{gathered}\lim f(x) \\ x \rightarrow c\end{gathered}=c^{2}-2 c+1=f(c)$

2 .Discontinuity means a function breaks at a particular point.
Example 34: Discuss the continuity of $f(x)$ if
$f(x)=\left\{\begin{array}{l}\frac{x^{3}+27}{x+3} ; x \neq-3 \\ 27 ; x=-3\end{array}\right.$
Solution:Condition 1: $f(-3)=27$, therefore $\mathrm{f}(\mathrm{x})$ is defined at $\mathrm{x}=3$
Condition 2: $\begin{aligned} & \lim \frac{x^{3}+27}{x+3} \\ & x \rightarrow-3\end{aligned} \lim _{x \rightarrow-3} \frac{(x+3)\left(x^{2}-3 x+9\right)}{(x+3)}$

$$
\begin{aligned}
& =\lim _{x \rightarrow-3} x^{2}-3 x+9 \\
& =9+9+9 \\
& =27
\end{aligned}
$$

Condition 3: $\quad \begin{aligned} & \lim f(x) \\ & x \rightarrow-3\end{aligned}=f(-3)=27$
$\therefore f(x)$ is continous.
Example 35: Determine whether or not the function below is continous at $x=1$

$$
f(x)=\left\{\begin{array}{l}
\frac{x^{2}-1}{x-1} \text { if } x \neq 1 \\
2 \text { if } x=1
\end{array}\right.
$$

Solution:
Condition 1: $f(1)=2$ hence $f(1)$ is defined.

Condition3: $\lim f(x) \lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=f(1)$, hence $f(x)$ is continous at $\mathrm{x}=1$
Example 36: .Discuss the continuity of $f(x)$ if
$f(x)=\left\{\begin{array}{l}\frac{x^{2}-4}{x-2}, x \neq 2 \\ 3 \quad x=2\end{array}\right.$
Solution:
Condition 1: $\mathrm{f}(2)=3$, $\operatorname{so} \mathrm{f}(\mathrm{x})$ is defined at $\mathrm{x}=2$
Condition 2:

$$
\begin{aligned}
\lim f(x) & =\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2} \\
& =\lim _{x \rightarrow 2} \frac{(x+2)(x-2)}{(x-2)} \text { hence } \lim f(x) \text { exists. } \\
& =2
\end{aligned}
$$

$\therefore f(x)$ Condition 3: $f(2)=3$ but $\begin{gathered}\lim f(x) \\ x \rightarrow 2\end{gathered}=2 \therefore \begin{gathered}\lim _{x \rightarrow 2} f(x)\end{gathered} \neq f(2)$ Thus $f(x)$ is discontinuous at $x=2$
Exercise
Define the continuity of a real valued function $f(x)$ at a point $\mathrm{x}=\mathrm{a}$. Hence determine if the following function is continous at $x=1$.
$f(x)=\left\{\begin{array}{l}\frac{x^{3}-1}{x-1}, x \neq 1 \\ 3, \quad x=1\end{array}\right.$

Example37: Show that $f(x)=\frac{1}{x-2}$ for is $\quad x \neq 2$ is not continous at $x=2$.
Solution:

Because f is not defined at the point $x=2$ it is not continous there. Moreover f has what might be called an infinite discontinuity at $x=2$

Combinations of continous Functions.

Any sum or product of continous functions is continous. That is, if the functions f and g are continous at $x=a$, then so are $f+g$ and $f \cdot g$ e.g if f and g are continous at $x=a$, then
$\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)=f(a)+g(a)$
Example 38: $f(x)=x$ is continous everywhere,i.e.

It follows that the cubic polynomial function $f(x)=x^{3}-3 x^{2}+1$ is continous everywhere. More generally every polynomial function $p(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\ldots+b_{1} x+b_{0}$ is continous at each point of the real line.
If $p(x)$ and $q(x)$ are polynomials, then the quotient law for limits and the continuity of polynomials imply that
$\lim _{x \rightarrow a} \frac{p(x)}{q(x)}=\frac{\lim _{x \rightarrow a} p(x)}{\lim _{x \rightarrow a} q(x)}=\frac{p(a)}{q(a)}$ provided $q(a) \neq 0$. Thus every rational function $f(x)=\frac{p(x)}{q(x)}$ is continous wherever it is defined.

The point $x=a$ where the function f is discontinuous is called a removable discontinuity of f provided that there exists a function F such that $F(x)=f(x)$ for all $x \neq a$ in the domain of f, and this new function F is continous at $x=a$.
Example 39: Suppose that $f(x)=\frac{x-2}{x^{2}-3 x+2}$
$x^{2}-3 x+2=(x-1)(x-2)$
$\therefore f(x)=\frac{x-2}{(x-1)(x-2)}$
This shows that f is not defined at $x=1$ and $x=2 \Rightarrow f(x)$ is continous except at these points.
But $f(x)=\frac{x-2}{(x-1)(x-2)}=\frac{1}{x-1}$. The new function $F(x)=\frac{1}{x-1}$ is continous at $x=2$, where $F(2)=1$. Therefore f has a removable discontinuity at $x=2$; the discontinuity at $x=1$ is not removable.

$$
y=F(x)
$$

Composition of Continous Functions

Let $h(x)=f(g(x))$ where f and g are continous functions. The composition of two continous functions is continous or more precisely, if g is continous at a and f is continous at $g(a)$, then $f \circ g$ is continous at a where $f \circ g=f(g(x))$.
Proof: The continuity of g at a means that $\lim _{x \rightarrow a} g(x)=g(a)$, and the continuity of f at $g(a)$ implies that $\lim _{g(x) \rightarrow g(a)} f(g(x))=f(g(a))$
i.e. $\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)=f(g(a))$

Example 40: Show that the function $f(x)=\left(\frac{x-7}{x^{2}+2 x+2}\right)^{\frac{2}{3}}$ is continous on the whole real line.
Solution: Consider the denominator

$$
x^{2}+2 x+2=(x+1)^{2}+1>0 \text { for all value of } x \text {. Hence the rational function }
$$

$$
r(x)=\frac{x-7}{x^{2}+2 x+2} \text { is defined and continous everywhere. Thus } f(x)=\left([r(x)]^{2}\right)^{\frac{1}{3}} \text { is }
$$ continous everywhere.

One-sided limits

Let $S \subseteq \mathbb{R}$ and $f: S \rightarrow \mathbb{R}$ be a function. If for every $x \in S, f(x) \rightarrow L$ as $x \rightarrow a$ and $x>a$ always, then we say that $x \rightarrow a$ from the right and write $x \rightarrow \stackrel{+}{a}$ or we say $\lim _{x \rightarrow+}^{+} f(x)=L$. Similarly, if $f(x) \rightarrow L$ as $x \rightarrow a$ and $\quad x<a$ always, we say that $x \rightarrow a$ from the left and write $x \rightarrow \bar{a}$ or we say $\lim _{x \rightarrow \bar{a}}=L$.
The limits $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow \bar{a}} f(x)$ are called one-sided limits of f and a

Remarks

1. $\lim _{x \rightarrow a} f(x)=L \quad$ iff $\quad \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} f(x)=L$
i.e the limit of a function $f(x)$ exists if the right hand side limit $=$ left-hand side limit.
2. If $\lim _{x \rightarrow a} \neq \lim _{x \rightarrow \bar{a}} f(x)$, then $\lim _{x \rightarrow a} f(x)$ does not exist.

Example 41: Given $f(x)=\frac{x}{x-1}$, Find $\lim _{x \rightarrow 1} f(x)$ and $\lim _{x \rightarrow 1} f(x)$
Solution:

0	$\frac{1}{2}$	1	$1 \frac{1}{2}$	2
0	-1	∞	3	2

Also consider the graph of $f(x)=\frac{1}{x-1} \quad y$

$\lim f(x)=-\infty$ if $x<1$
$\underset{x \rightarrow 1}{\substack{x \rightarrow 1}} f(x)-\infty^{1}$ if $x>1$
$\therefore \lim _{x \rightarrow 1} f(x)=\infty \Rightarrow \lim _{x \rightarrow 1} f(x)$ does not exist.
Example 42: Consider the following graph y

$$
\begin{aligned}
y=f(x) & =\frac{1}{x^{2}} \\
y & =\frac{1}{x^{2}}
\end{aligned}
$$

$$
\lim _{x \rightarrow 0^{+}} f(x)=\infty \quad \lim _{x \rightarrow 0} f(x)=\infty
$$

Example 43: Draw the graph of

$$
f(x)= \begin{cases}1, & \text { if } x=1 \\ -x, & \text { if }-1<x<1 \\ -1, & \text { if } x>1\end{cases}
$$

Solution:

On the other hand, $\lim _{x \rightarrow 2}(1+\sqrt{x-2})$ does not exist (is not real).

Definition: A function f is said to be continous from the right at $x=p$ if $\lim _{x \rightarrow p^{+}} f(x)=f(p)$.
We say that f is continous from the left at q if $\lim _{x \rightarrow p^{-}} f(x)=f(q)$
A function is said to be continous if its continous from the right and from the left i.e $\lim _{x \rightarrow p^{+}} f(x)=\lim _{x \rightarrow p^{-}} f(x)=f(p)$
Example 45: Discuss the continuity of $g(x)=\sin x= \begin{cases}+1 & \text { if } x \geq 0 \\ -1 & \text { if } x<0\end{cases}$
Solution:
$\lim _{x \rightarrow 0} g(x)=-1$ and $\lim _{x \rightarrow 0} g(x)=-1$.Therefore Its left-hand and right-hand limits at $x=0$ are unequal
Thus $g(x)$ has no limit as $x \rightarrow 0$. Hence the function g is not continous at $x=0$, it has what might be called a finite jump discontinuity there. (see the graph below)

Example 46: Discuss the continuity of $h(x)= \begin{cases}\frac{\sin x}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}$
Solution:
$\lim _{x \rightarrow 0} h(x)=\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ whereas $h(0)=0$
\Rightarrow the limit and the value of h at $x=0$ are not equal.
Thus the function h is not continous there (see the graph below)

The point $(0,0)$ is on the graph, the point $(0,1)$ is not.

Remark:
Another way of finding out if functions are continous at $x=a$ is by:

1. Checking if $f(a)$ is defined.
2. Checking if $\lim _{x \rightarrow a}^{+} f(x)=\lim _{x \rightarrow-\bar{a}} f(x)$ and exist and are equal.
3. Ensuring that both are equal to $f(a)$.

Example 47: Find the value of c such that $f(x)=\left\{\begin{array}{ll}x+c & \text { if } x<0 \\ 4-x^{2} & \text { if } x \geq 0\end{array}\right.$ is continous at $x=0$.
Solution:
Condition 1: Is $f(x)$ defined at $x=0$?
Yes, $f(x)=4-x^{2}$

$$
\therefore f(0)=4-0^{2}=4
$$

Condition 2: Does $\lim _{x \rightarrow 0} f(x)$ exist? In other words,
Does $\lim _{x \rightarrow 0} f(x)$ exist?

$$
\text { Yes, } \lim _{x \rightarrow 0} f(x)=0+c=c
$$

Does lim exist?
$x \rightarrow 0$
Yes, $\lim _{x \rightarrow 0^{+}} f(x)=4-x^{2}=4-0^{2}=4$
(c) Is $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} f(x)$.
For them to be equal, $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} f(x) \Rightarrow c=4$
Thus, $\lim _{x \rightarrow 0} f(x)$ exists, i.e. $\lim _{x \rightarrow 0} f(x)=4$
Condition 3: Is $\lim _{x \rightarrow 0} f(x)=f(0)$
Yes, $\lim _{x \rightarrow 0} f(x)=f(0)=4$
Conclusion: for $f(x)$ to be continous at $x=0$, then $c=4$.
Exercise: Evaluate

1. $\lim _{x \rightarrow 3} \frac{x^{2}-2 x}{x+1}$
2. $\lim _{x \rightarrow-\infty} \frac{x-2}{x^{2}+2 x+1}$
3. $\lim _{x \rightarrow 6} \frac{y+6}{y^{2}-36}$
4. $\lim _{x \rightarrow+\infty} \frac{2-y}{\sqrt{7+6 y^{2}}}$
5. $\lim _{x \rightarrow 3^{+}} \frac{x}{x-3}$
6.

$\lim _{x \rightarrow 2} \frac{x}{x^{2}-4}$
7. $\lim _{y \rightarrow 4} \frac{4-y}{2-\sqrt{y}}$ 8. $\lim _{x \rightarrow \infty} \sqrt{\frac{5 x^{2}-2}{x+3}} \quad$ 9. $\lim _{x \rightarrow \pi} \sin \left(\frac{x^{2}}{\pi+x}\right)$
10. For the following problems find the points where given function is not defined and therefore not continous. For each such point a, tell whether this discontinuity is removable.
a) $f(x)=\frac{x}{(x+3)^{3}}$
b) $f(x)=\frac{x-2}{x^{2}-4}$
c) $f(x)=\frac{1}{1-|x|}$
d) $f(x)=\frac{x-17}{|x-17|}$
e) $f(x)= \begin{cases}-x & \text { if } x<0 \\ x^{2} & \text { if } x>0\end{cases}$
f) $f(x)= \begin{cases}1+x^{2} & \text { if } x<0 \\ \frac{\sin x}{x} & \text { if } x>0\end{cases}$
11. For the following problems find a value of the constant c so that the function $f(x)$ is continous for all x.
a) $f(x)= \begin{cases}x+c & \text { if } x<0 \\ 4-x^{2} & \text { if } x \geq 0\end{cases}$
Answer: $\mathrm{c}=4$
b) $f(x)= \begin{cases}2 x+c & \text { if } x \leq 3 \\ 2 c-x & \text { if } x>3\end{cases}$ $\mathrm{c}=9$
c) $f(x)= \begin{cases}c^{2}-x^{2} & \text { if } x<0 \\ 2(x-c)^{2} & \text { if } x \geq 0\end{cases}$

Answer: $\mathrm{c}=0 \quad$ d) $f(x)= \begin{cases}c^{3}-x^{3} & \text { if } x \leq \pi \\ c \sin x & \text { if } x>\pi\end{cases}$
Answer: $c=\pi$

