StuDocu.com

SMA1022011 0704 - For revision purposes

BUSINESS MANAGEMENT (Kenyatta University)

KENYATTA UNIVERSITY

UNIVERSITY EXAMINATIONS 2010/2011

OPEN, DISTANCE AND E-LEARNING EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

SMA 102: BASIC MATHEMATICS

DATE: Monday 4th July 2011 TIME: 8.00a.m – 10.00a.m

INSTRUCTIONS:

Answer question ONE and any other TWO questions

QUESTION ONE

(20 marks)

1. a) The roots of the equation $2x^2 - 3x - 5 = 0$ are \propto and β . Find the value of

i)
$$\frac{1}{\alpha^2 - 1} + \frac{1}{\beta^2 + 1}$$

[2marks]

ii)
$$\propto /\beta + \beta/\propto$$

[2marks]

b) How many permutations are there of all the letters in the word MATHEMATICS?

[3marks]

c) Simplify
$$\frac{x^{-1/2} - (x^2 + 1)^{1/2} - x^{1/2} (x^2 + 1)^{-1/2}}{x^{1/2} (x^2 + 1)^{1/2}}$$

[3marks]

d) Evaluate without using tables

$$\frac{\cot \pi/6 \cos \frac{II\pi}{6} - \sin \frac{5\pi}{6}}{\csc^2 \pi/4 \cos^2 \frac{5\pi}{6}}$$

e) Express -3 - 4i in the form $r(\cos\theta + i\sin\theta)$

[4marks]

f) Prove that $(1 - \cos A)$ $(1 + \sec A) = \sin A \tan A$.

[3marks]

g) Find the remainder when $x^5 - 4x^3 + 2x + 3$ is divided by x + 2.

[4marks]

QUESTION TWO

(20 marks)

Rationalize the denominator and simplify $\frac{1}{(3\sqrt{2}-1)^2}$ a)

[4marks]

Find the value of a and b if the expression $2x^3 - 15x^2 + ax + b$ is divided both by (x - 4)b) and (2x - 1).

[5marks]

Factorise $x^4 + x^3 - 3x^2 - 4x - 4$ as far as possible. c)

[4marks]

Solve $2^{2x-1} - 9(2)^{x-2} + 1 = 0$ d)

[5marks]

Express $\sqrt{2000}$ in terms of the simplest surd. e)

[3marks]

QUESTION THREE

(20 marks)

- If $\sin \alpha = \frac{2}{3}$ and $\cos \beta = \frac{2}{7}$ find the possible values of $\cos (\alpha + \beta)$ a) [4marks]
- Given that angle RST = θ and angle SRT = 2θ prove that $\cos\theta = \frac{r}{2s}$ b)

[4marks]

Find the angles of triangle whose sides are 2: 3: 4. c)

[4marks]

- Calculate the radius of a circle given that a segment of it has an area of 10cm² and d) subtends an angle of $\frac{\pi}{4}$ at the centres. [4marks]
- Find the solution of the equation $4\sin\theta(2\tan\theta + 3) + 6\tan\theta + 9 = 0$. e)

QUESTION FOUR.

(20 marks)

a) State Moivre's Theorem. [2marks]

Find $(1+i\sqrt{3})^{10}$ b)

[5marks]

Simplify $\frac{(\cos\theta - j\sin\theta)^7(\cos\theta + j\sin2\theta)^4}{(\cos 3\theta + j\sin 3\theta)^6 (\cos 4\theta - j\sin 4\theta)^2}$ c)

[4marks]

- Given that $z_1 = 3-2j$, $z_2 = -3-4j$, $z_{3=}j 2$. d)
 - Obtain $3z_1 2z_2 + z_3$, i)

[4marks]

 $\frac{z_1}{z_2}$ in terms of r_1, r_2, θ_1 and θ_2 ii)

[5marks]

QUESTION FIVE

(20 MARKS)

Evaluate a)

- i) $10_{P_{\kappa}}$ [2marks]
- ii) $19_{P_A | \overline{P}|}$ [2marks]
- b) How many 3-digit numbers can be made from the integers 2, 3, 4, 5, 6 if each digit is used only once. [2marks]
- c) A rugby team consists of 15 players.
 - i) How many teams can be selected form a squad of 20? [3marks]
 - ii) If 10 players are definitely in the team, how many teams are now possible? [3marks)
- d) i) Expand $(r+x)^{\frac{1}{2}}$ up to the 4th term. [4marks]
 - iii) By substituting 0.08 for x in $(1 + x)^{1/2}$ and its expansion, find $\sqrt{3}$ correct to 4 sig, fig. [4marks]