StuDocu.com

SMA1022011 0704 - For revision purposes

BUSINESS MANAGEMENT (Kenyatta University)

KENYATTA UNIVERSITY
 UNIVERSITY EXAMINATIONS 2010/2011

OPEN, DISTANCE AND E-LEARNING EXAMINATION FOR THE DEGREE OF
BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

SMA 102: BASIC MATHEMATICS
DATE: Monday $4^{\text {th }}$ July $2011 \quad$ TIME: 8.00a.m - 10.00a.m

INSTRUCTIONS:

Answer question ONE and any other TWO questions
QUESTION ONE
(20 marks)

1. a) The roots of the equation $2 x^{2}-3 x-5=0$ are $\alpha \operatorname{and} \beta$. Find the value of
i) $\frac{1}{\alpha^{2}-1}+\frac{1}{\beta^{2}+1}$
ii) $\quad \alpha / \beta+\beta / \alpha$
[2marks]
b) How many permutations are there of all the letters in the word MATHEMATICS?
c) Simplify $\frac{x^{-1 / 2}-\left(x^{2}+1\right)^{1 / 2}-x^{1 / 2}\left(x^{2}+1\right)^{-1 / 2}}{x^{1 / 2}\left(x^{2}+\right)^{1 / 2}}$
d) Evaluate without using tables

$$
\frac{\cot \pi / 6 \cos \frac{I I \pi}{6}-\sin \frac{5 \pi}{6}}{\operatorname{cosec}^{2} \pi / 4 \cos ^{2} \frac{5 \pi}{6}}
$$

e) Express $-3-4 j$ in the form $r(\cos \theta+j \sin \theta)$
f) Prove that $(1-\cos A)(1+\sec A)=\operatorname{Sin} A \tan A$.
g) Find the remainder when $x^{5}-4 x^{3}+2 x+3$ is divided by $x+2$. [4marks]

QUESTION TWO

(20 marks)
a) Rationalize the denominator and simplify $\frac{1}{(3 \sqrt{2}-1)^{2}}$
[4marks]
b) Find the value of a and b if the expression $2 x^{3}-15 x^{2}+a x+b$ is divided both by $(x-4)$ and ($2 x-1$).
c) Factorise $x^{4}+x^{3}-3 x^{2}-4 x-4$ as far as possible.
d) Solve $2^{2 x-1}-9(2)^{x-2}+1=0$
e) Express $\sqrt{2000}$ in terms of the simplest surd.

QUESTION THREE

 (20 marks)a) If $\sin \alpha=2 / 3$ and $\cos \beta=2 / 7$ find the possible values of $\cos (\alpha+\beta)$
[4marks]
b) Given that angle RST $=\theta$ and angle $S R T=2 \theta$ prove that $\cos \theta=\frac{r}{2 s}$
c) Find the angles of triangle whose sides are 2:3:4.
d) Calculate the radius of a circle given that a segment of it has an area of $10 \mathrm{~cm}^{2}$ and subtends an angle of $\pi / 4$ at the centres.
[4marks]
e) Find the solution of the equation $4 \sin \theta(2 \tan \theta+3)+6 \tan \theta+9=0$.

QUESTION FOUR.

(20 marks)
a) State Moivre's Theorem.
b) \quad Find $(1+j \sqrt{3})^{10}$
c) \quad Simplify $\frac{(\cos \theta-j \sin \theta)^{7}(\cos \theta+j \sin 2 \theta)^{4}}{(\cos 3 \theta+j \sin 3 \theta)^{6}(\cos 4 \theta-j \sin 4 \theta)^{2}}$
d) Given that $\mathrm{z}_{1}=3-2 j, z_{2}=-3-4 \mathrm{j}, \mathrm{z}_{3}=\mathrm{j}-2$.
i) Obtain $3 z_{1}-2 z_{2}+z_{3}$,
[4marks]
ii) $\frac{z_{1}}{z_{2}}$ in terms of r_{1}, r_{2}, θ_{1} and θ_{2}
[5marks]

QUESTION FIVE

(20 MARKS)
a) Evaluate
i)

[2marks]
ii)
$19_{P_{4} \text { ? }}$
[2marks]
b) How many 3-digit numbers can be made from the integers 2, 3, 4, 5, 6 if each digit is used only once.
c) A rugby team consists of 15 players .
i) How many teams can be selected form a squad of 20 ?
[3marks]
ii) If 10 players are definitely in the team, how many teams are now possible?
[3marks)
d) i) Expand $(r+x)^{1 / 2}$ up to the $4^{\text {th }}$ term.
[4marks]
iii) By substituting 0.08 for x in $(1+\mathrm{x})^{1 / 2}$ and its expansion, find $\sqrt{3}$ correct to 4 sig, fig.
[4marks]

