# StuDocu.com

## SMA1042011 0706 - Assignment

**BUSINESS MANAGEMENT (Kenyatta University)** 



#### KENYATTA UNIVERSITY

#### **UNIVERSITY EXAMINATIONS 2010/2011**

### OPEN, DISTANCE AND E-LEARNING EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

#### SMA 104: CALCULUS I

DATE: Wednesday 6<sup>th</sup> July 2011 TIME: 2.00p.m – 4.00p.m

INSTRUCTIONS: Answer Question ONE and any other TWO Questions.

#### **QUESTION ONE (30MARKS)**

a) Evaluate the following limits.

i) 
$$\lim_{x \to 1} \frac{x^2 + 6x - 7}{x - 1}$$
 [2]

ii) 
$$\lim_{x \to 0} \frac{\tan x - x}{x^3}$$
 [3]

b) Use the First principle to find the derivative of the function

$$y = \frac{1}{x^3}$$
 with respect to x. [5]

c) Use chain rule to differentiate  $y = h(x) = (x^2 - 6x + 5)^3$ 

$$y = h(x) = (x^2 - 6x + 5)^3$$
 [3]

d) Use product rule to differentiate

$$y = h(x) = e^{2x^3} (x^2 + x + 2)$$
 [3]

[5]

e) Given the function 
$$f(x) = x^4 - 2x^2 + 7$$
. Find the turning points.

f) The position of a particle on a line is given by  $s(t) = t^3 - 3t^2 - 6t + 5$ , where t is measured in seconds and s is measured in feet. Find

ii) The acceleration of the particle at the end of 2 seconds. [2]

g) Find the equation of the normal line to the parabola  $y = 4x^2$  at the point (-1,4) [5]

Page 1 of 3

#### QUESTION TWO (20MARKS)

a) Find the derivative of 
$$y = e^{\sqrt{x^2} + 4}$$
 [3]

b) Find the equation of the tangent and normal at a point for which t=2, given that the

parametric equations at a curve are 
$$x = \frac{3t}{1+t}$$
,  $y = \frac{t^2}{1+t}$  [7]

c) Find the turning points of the curve  $y = x^4 - 6x^2 + 8x + 10$  distinguish them, hence sketch the curve. [10]

#### **QUESTION THREE (20MARKS)**

a) Use implicit differentiation to evaluate

$$x^2 + y^2 - 2x - 6y + 5 = 0$$
 [3]

b) Find 
$$\frac{dy}{dx}$$
 given that  $y = \sqrt{\frac{2x+1}{3x-2}}$ 

c) If 
$$y = \sqrt{1 + \sin x}$$
, show that  $\frac{dy}{dx} = \frac{1}{2}\sqrt{1 - \sin x}$  [5]

d) We have 1200 metres of fencing material, and wish to enclose a double paddock with two equal rectangular areas as shown in the diagram below.



Suppose that each of the two rectangular areas has sides x and y in metres, as shown in the picture. Find the dimensions of x and y that will maximize the area enclosed by the fence. [6]

#### **QUESTION FOUR (20MARKS)**

- a) Find  $\frac{dy}{dx}$  for the function  $y = (x-1)\sqrt{x^2 2x + 2}$  [3]
- b) Evaluate the limit

$$\lim_{x \to 3} \frac{x-3}{\sqrt{x-2} - \sqrt{4-x}}$$
 [5]

- c) Gas is escaping from a spherical balloon at the rate of 900cm<sup>3</sup>/sec. How fast is the surface area shrinking when the radius is 360cm<sup>2</sup>?
- d) A closed rectangular container has a square base and is required to have a volume of 64cm³, if the container is made of thin metal find the dimensions which will minimize the surface area.

#### **QUESTION FIVE (20MARKS)**

- a) Find the derivative of the function  $y=x^3\sin(3x+2)$ . [3]
- b) If  $y = e^{3x} \sin 4x$ . Find

$$\frac{d^2y}{dx^2} - \frac{dy}{dx} + 25y \tag{7}$$

- c) A rental agent estimates that the monthly profit p from a building 5 storeys high is given by  $t = 4600s 100s^2$ . What height would maximize the profitable? [4]
- d) Determine the area of the largest piece of rectangular ground that can be enclosed by 100m of fencing, if part of an existing wall is used as one side. [6]