
## Chemical Thermodynamics

• The chemistry that deals with energy exchange, entropy, and the spontaneity of a chemical process.

## Thermodynamics vs. Kinetics

- Kinetics Domain
  - Rate of a reaction depends on the pathway from reactants to products.
- Thermodynamics tells us whether a reaction is spontaneous based only on the properties of reactants and products.



## First Law of Thermodynamics

• The change in the *internal energy* ( $\Delta E$ ) of a thermodynamic system is equal to the amount of *heat energy* (q) added to or lost by the system plus *work done* (w) on or by the system.

$$\Delta E = q + w$$

• For work that only involves gas expansion or compression,  $w = -p\Delta V$ ;

### Values of Thermodynamic Functions

- FLoT:  $\Delta E = q + w$ ;
  - q is assigned a positive value if heat is absorbed,
     but a negative value if heat is lost by the system;
  - w is assigned a positive value if work is done on,
    but a negative value if work is done by the system.
  - For processes that do not involve phase changes, positive  $\Delta E$  results in temperature increase.

## Spontaneous Processes and Entropy

- Thermodynamics lets us predict whether a process will occur but gives no information about the amount of time required for the process.
- A spontaneous process is one that occurs without outside intervention.



Consider 2.4 moles of a gas contained in a 4.0 L bulb at a constant temperature of 32°C. This bulb is connected by a valve to an evacuated 20.0 L bulb. Assume the temperature is constant.

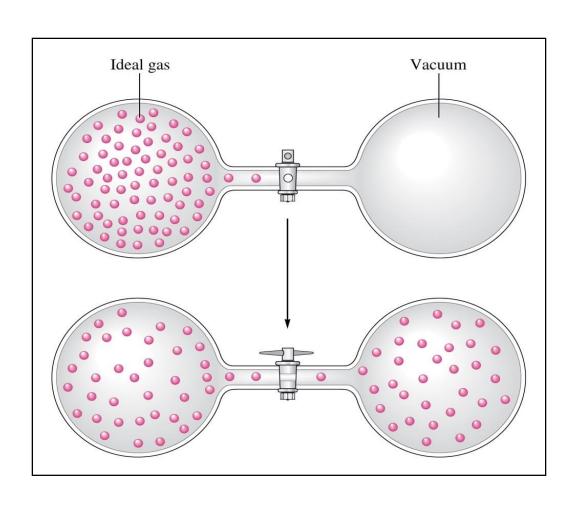
a) What should happen to the gas when you open the valve?



Consider 2.4 moles of a gas contained in a 4.0 L bulb at a constant temperature of 32°C. This bulb is connected by a valve to an evacuated 20.0 L bulb. Assume the temperature is constant.

b) Calculate  $\Delta H$ ,  $\Delta E$ , q, and w for the process you described above.

All are equal to zero.




Consider 2.4 moles of a gas contained in a 4.0 L bulb at a constant temperature of 32°C. This bulb is connected by a valve to an evacuated 20.0 L bulb. Assume the temperature is constant.

c) Given your answer to part b, what is the driving force for the process?

Entropy

## The Expansion of An Ideal Gas Into an Evacuated Bulb

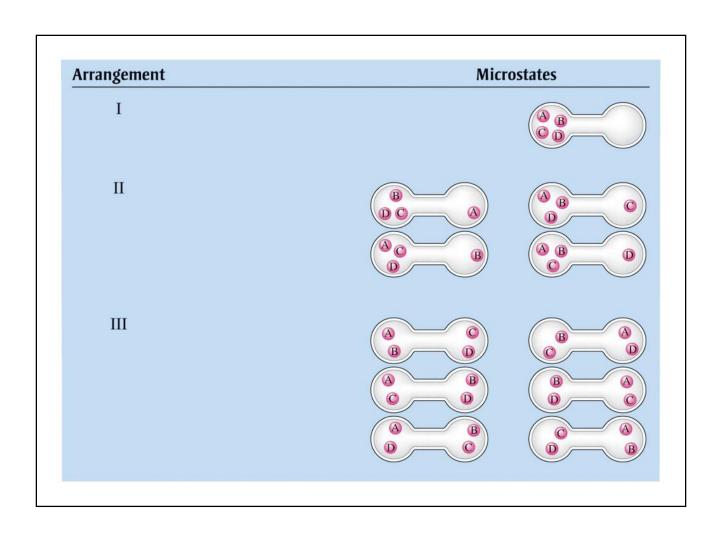


## Entropy

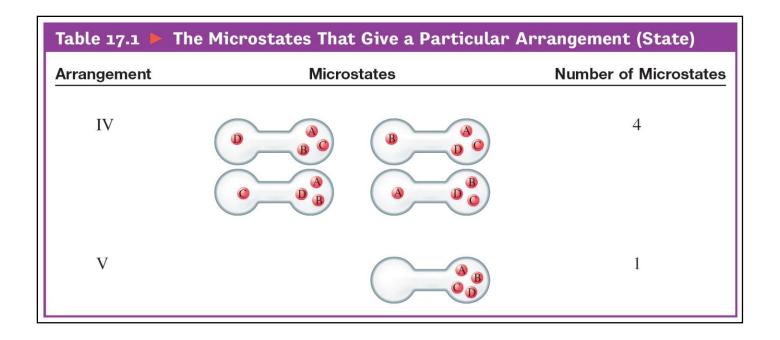
• Thermodynamic function that describes the number of arrangements that are available to a system existing in a given state.

## What is Entropy?

- A thermodynamic (*energy*) function that describes the degree of *randomness* or *probability* of existence.
- As a *state function* entropy change depends only on the initial and final states, but not on how the change occurs.


## Entropy

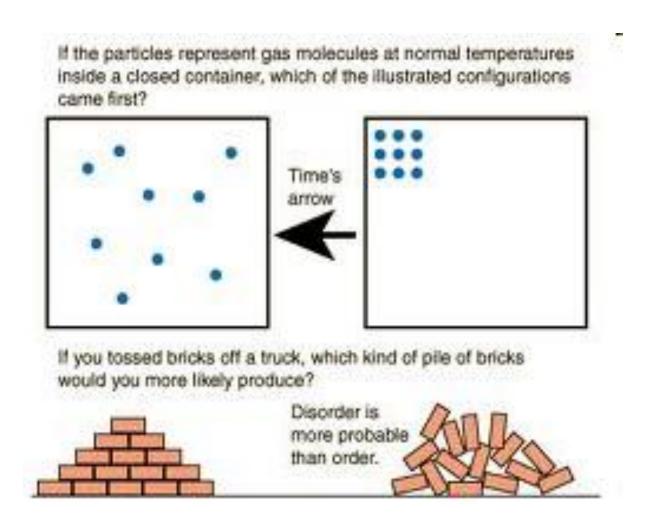
• The driving force for a spontaneous process is an increase in the entropy of the universe.


## What is the significance of *entropy*?

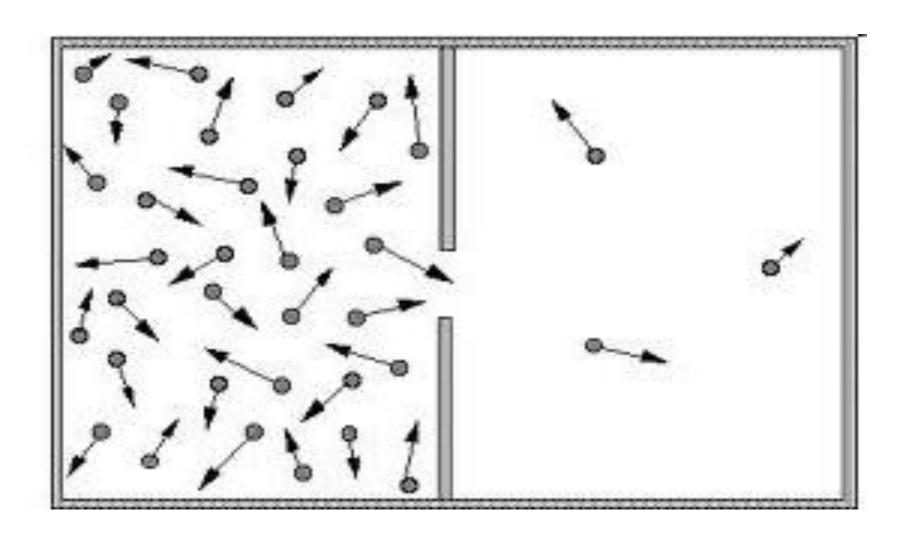
- Nature spontaneously proceeds toward the state that has the highest probability of (energy) existence – highest entropy
- Entropy is used to predict whether a given process/reaction is thermodynamically possible;

# The Microstates That Give a Particular Arrangement (State)




# The Microstates That Give a Particular Arrangement (State)




## Positional Entropy

- A gas expands into a vacuum because the expanded state has the highest positional probability of states available to the system.
- Therefore:  $S_{solid} < S_{liquid} << S_{gas}$

### Entropy: which are most probable?



#### Where do molecules have the higher entropy





Predict the sign of  $\Delta S$  for each of the following, and explain:

- a) The evaporation of alcohol
- b) The freezing of water
- c) Compressing an ideal gas at constant temperature
- d) Heating an ideal gas at constant pressure
- e) Dissolving NaCl in water

### Relative Entropy of Substances

#### • Entropy:

- increases from solid to liquid to vapor/gas;
- increases as temperature increases;
- of gas increases as its volume increases at constant temperature;
- increases when gases are mixed.
- of elements increases down the group in the periodic table;
- of compound increases as its structure becomes more complex.

## Second Law of Thermodynamics

- In any spontaneous process there is always an increase in the entropy of the universe.
- The entropy of the universe is increasing.
- The total energy of the universe is constant, but the entropy is increasing.

$$\otimes S_{universe} = \otimes S_{system} + \otimes S_{surroundings}$$

## Second Law of Thermodynamics

- Energy tends to flow from a high energy concentration to a dispersed energy state;
- Energy dispersion or diffusion is a *spontaneous* process.
- Dispersed or diffused energy is called *entropy*
- According to *SLoT*, a process/reaction is *spontaneous* if the *entropy* of the *universe* (system + surrounding) *increases*.



## Concept Check Effect of Temperature on Spontaneity

For the process  $A(l) \rightleftharpoons A(s)$ , which direction involves an increase in energy randomness? Positional randomness? Explain your answer.

As temperature increases/decreases (answer for both), which takes precedence? Why?

At what temperature is there a balance between energy randomness and positional randomness?



Describe the following as spontaneous/non-spontaneous/cannot tell, and explain.

#### A reaction that is:

- (a) Exothermic and becomes more positionally random Spontaneous
- (b) Exothermic and becomes less positionally random Cannot tell
- (c) Endothermic and becomes more positionally random Cannot tell
- (d) Endothermic and becomes less positionally random

  Not spontaneous

Explain how temperature affects your answers.

## $\otimes S_{\text{surr}}$

- The sign of  $\otimes S_{surr}$  depends on the direction of the heat flow.
- The magnitude of  $\otimes S_{surr}$  depends on the temperature.

## $\otimes S_{\text{surr}}$

```
Driving force provided by the energy flow (heat)  \frac{\text{provided by}}{\text{the surroundings}} = \frac{\text{quantity of heat (J)}}{\text{temperature (K)}}
```



Exothermic process: 
$$\Delta S_{\text{surr}} = + \frac{\text{quantity of heat (J)}}{(II)}$$

 $\Delta S_{\text{surr}} = + \frac{\text{quantity of heat (J)}}{\text{temperature (K)}}$ 

Endothermic process: 
$$\Delta S_{\text{surr}} = -\frac{\text{quantity of heat (J)}}{(II)}$$

temperature (K)

## $\otimes S_{\text{surr}}$

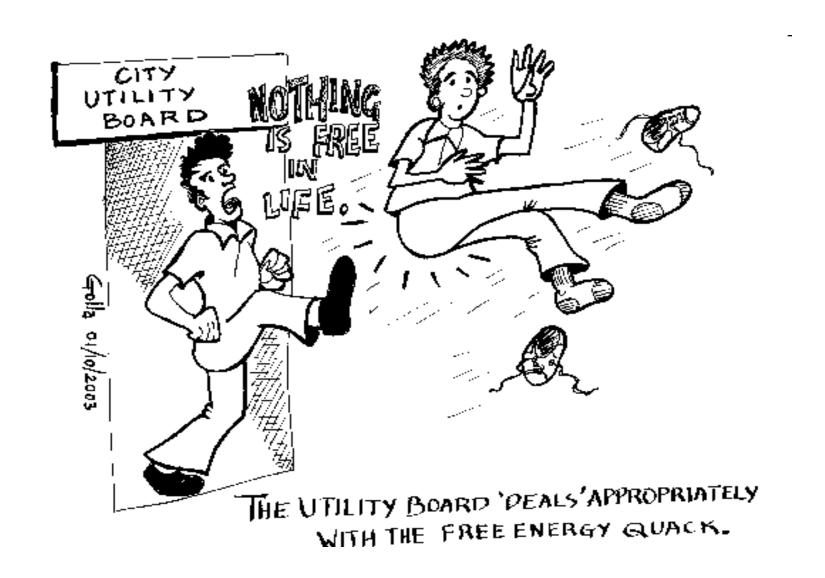
Heat flow (constant P) = change in enthalpy =  $\otimes H$ 

$$\Delta S_{\text{surr}} = -\frac{\Delta H}{T}$$

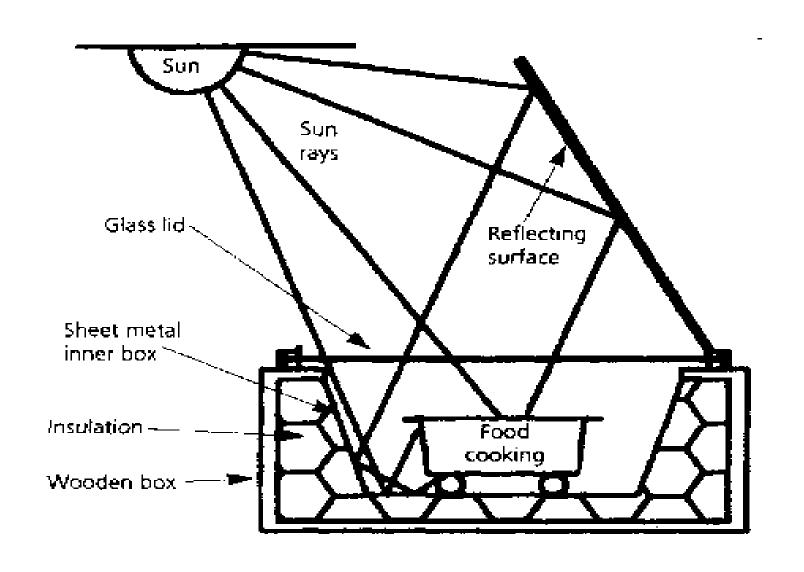
## Interplay of $\Delta S_{\rm sys}$ and $\Delta S_{\rm surr}$ in Determining the Sign of $\Delta S_{\rm univ}$

| -                    | is of Entropy Cha    |                      |                                                                                      |
|----------------------|----------------------|----------------------|--------------------------------------------------------------------------------------|
| $\Delta S_{\rm sys}$ | $\Delta S_{ m surr}$ | $\Delta S_{ m univ}$ | Process Spontaneous?                                                                 |
| +                    | +                    | +                    | Yes                                                                                  |
| _                    | <del>-</del>         | =                    | No (reaction will occur in opposite direction)                                       |
| +                    | _                    | ?                    | Yes, if $\Delta S_{\rm sys}$ has a larger magnitude than $\Delta S_{\rm surr}$       |
| _                    | +                    | ?                    | Yes, if $\Delta S_{\text{surr}}$ has a larger magnitude than $\Delta S_{\text{sys}}$ |

#### Effect of Temperature on $\Delta G$ and Spontaneity


|   | $\Delta H$ | $\Delta S$ | T              | $\Delta G$ | Comments                         | Examples                                      |
|---|------------|------------|----------------|------------|----------------------------------|-----------------------------------------------|
| • | _          | +          | high<br>or low | _          | spontaneous at all temperature   | $2H_2O_2(l) \rightarrow 2H_2O(l) + O_2(g)$    |
| • | +          | +          | high           | -          | spontaneous at high temperature  | $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$      |
| • | -          | _          | low            | -          | spontaneous at low temperature   | $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$       |
| • | +          | -          | high<br>or low | +          | nonspontaneous a all temperature | at $2H_2O(l) + O_2(g) \rightarrow 2H_2O_2(l)$ |

## Free Energy (G)


$$\Delta S_{\text{univ}} = -\frac{\Delta G}{T}$$
 (at constant  $T$  and  $P$ )

- A process (at constant *T* and *P*) is spontaneous in the direction in which the free energy decreases.
  - Negative  $\Delta G$  means positive  $\Delta S_{univ}$ .

## What is Free Energy?



## Free Energy?



## Free Energy (G)

• In Thermodynamic System:

 $\Delta G = \Delta H - T\Delta S$  (at constant T and P)

## Gibb's Free Energy

• For spontaneous reactions,

$$\Delta S_{
m univ} = \Delta S_{
m sys} + \Delta S_{
m surr} > 0$$
 $\Delta S_{
m surr} = -\Delta H_{
m sys}/T$ 
 $\Delta S_{
m univ} = \Delta S_{
m sys} - \Delta H_{
m sys}/T$ 
 $-T\Delta S_{
m univ} = \Delta G_{
m sys} = \Delta H_{
m sys} - T\Delta S_{
m sys} < 0$ 
 $\Delta G_{
m sys}$  is called Gibb's free energy

• Another criteria for spontaneous process is  $\Delta G_{\rm sys} < 0$ 

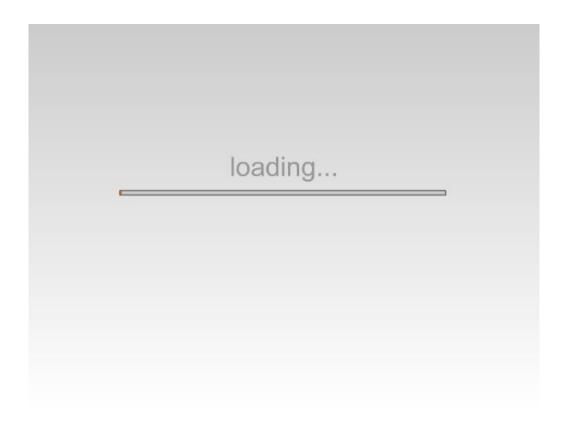


A liquid is vaporized at its boiling point. Predict the signs of:

```
W — Q + \Delta H + \Delta S + \Delta S_{surr} — \Delta G 0
```

Explain your answers.




#### Exercise

The value of  $\Delta H_{vaporization}$  of substance X is 45.7 kJ/mol, and its normal boiling point is 72.5°C.

Calculate  $\Delta S$ ,  $\Delta S_{surr}$ , and  $\Delta G$  for the vaporization of one mole of this substance at 72.5°C and 1 atm.

$$\Delta S = 132 \text{ J/K} \cdot \text{mol}$$
  
 $\Delta S_{\text{surr}} = -132 \text{ J/K} \cdot \text{mol}$   
 $\Delta G = 0 \text{ kJ/mol}$ 

# Spontaneous Reactions



# Effect of $\Delta H$ and $\Delta S$ on Spontaneity

| $\Delta H$ | $\Delta S$ | Result                      |
|------------|------------|-----------------------------|
| _          | +          | spontaneous at all temps    |
| +          | +          | spontaneous at high temps   |
| _          | _          | spontaneous at low temps    |
| +          | _          | not spontaneous at any temp |



# Concept Check

Gas  $A_2$  reacts with gas  $B_2$  to form gas AB at constant temperature and pressure. The bond energy of AB is much greater than that of either reactant.

Predict the signs of:

 $\Delta H$   $\Delta S_{surr}$   $\Delta S$   $\Delta S_{univ}$  - + 0 +

Explain.

# Third Law of Thermodynamics

- The entropy of a perfect crystal at 0 K is zero.
- The entropy of a substance increases with temperature.

# Standard Entropy Values (S°)

• Represent the increase in entropy that occurs when a substance is heated from 0 K to 298 K at 1 atm pressure.

$$\Delta S^{\circ}_{\text{reaction}} = \sum n_{p} S^{\circ}_{\text{products}} - \sum n_{r} S^{\circ}_{\text{reactants}}$$



#### Exercise

Calculate  $\Delta S^{\circ}$  for the following reaction:

$$2\text{Na}(s) + 2\text{H}_2\text{O}(l) \rightarrow 2\text{NaOH}(aq) + \text{H}_2(g)$$

Given the following information:

|                                      | $S^{\circ}$ (J/K·mol) |
|--------------------------------------|-----------------------|
| Na(s)                                | 51                    |
| $H_2O(l)$                            | 70                    |
| NaOH(aq)                             | 50                    |
| $H_2(g)$                             | 131                   |
| $\Delta S^{\circ} = -11 \text{ J/K}$ |                       |

### Standard Free Energy Change ( $\Delta G^{\circ}$ )

• The change in free energy that will occur if the reactants in their standard states are converted to the products in their standard states.

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$\Delta G^{\circ}_{\text{reaction}} = \sum n_{p} G^{\circ}_{\text{products}} - \sum n_{r} G^{\circ}_{\text{reactants}}$$



# Concept Check

Consider the following system at equilibrium at 25°C.

$$PCl_3(g) + Cl_2(g) = PCl_5(g)$$
$$\Delta G^{\circ} = -92.50 \text{ kJ}$$

What will happen to the ratio of partial pressure of PCl<sub>5</sub> to partial pressure of PCl<sub>3</sub> if the temperature is raised? Explain.

The ratio will decrease.

# Free Energy and Pressure

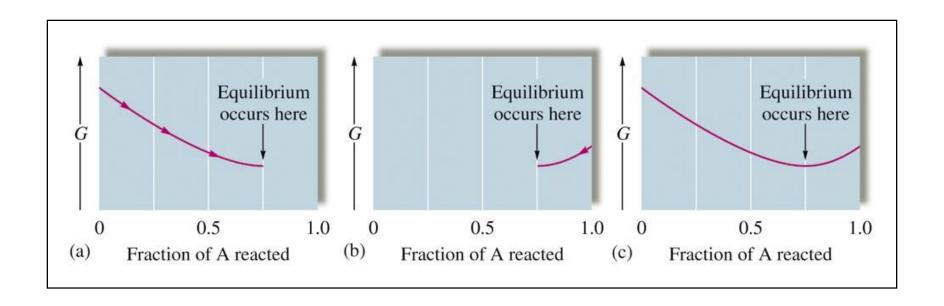
$$G = G^{\circ} + RT \ln(P)$$

or

$$\Delta G = \Delta G^{\circ} + RT \ln(Q)$$

### The Meaning of $\Delta G$ for a Chemical Reaction

 A system can achieve the lowest possible free energy by going to equilibrium, not by going to completion.




# Free Energy and Equilibrium

• The equilibrium point occurs at the lowest value of free energy available to the reaction system.

$$\Delta G = 0 = \Delta G^{\circ} + RT \ln(K)$$
$$\Delta G^{\circ} = -RT \ln(K)$$

### Change in Free Energy to Reach Equilibrium



# Qualitative Relationship Between the Change in Standard Free Energy and the Equilibrium Constant for a Given Reaction

| $\Delta G^{\circ}$                            | K             |
|-----------------------------------------------|---------------|
| $\Delta G^{\circ} = 0$ $\Delta G^{\circ} < 0$ | K = 1 $K > 1$ |
| $\Delta G^{\circ} > 0$                        | K < 1         |

# Free Energy and Work

 Maximum possible useful work obtainable from a process at constant temperature and pressure is equal to the change in free energy.

$$w_{\text{max}} = \Delta G$$

# Free Energy and Work

- Achieving the maximum work available from a spontaneous process can occur only via a hypothetical pathway. Any real pathway wastes energy.
- All real processes are irreversible.
- First law: You can't win, you can only break even.
- Second law: You can't break even.

# Third Law of Thermodynamics

• The entropy of a perfect crystalline substance is zero at absolute zero temperature (0.0 K)

• Is absolute zero temperature achievable?

# Standard Entropy, S<sup>o</sup>

- The entropy of a substance in its most stable state at 1 atm and 25°C.
- The entropy of an ionic species in 1 *M* solution at 25°C.

### Entropy and Second Law of Thermodynamics

- The *second law of thermodynamics* states that all spontaneous processes are accompanied by increase in the entropy of the *universe*.
  - Universe = System + Surrounding;
  - System: the process/reaction whose thermodynamic change is being studied;
  - Surrounding: the part of the universe that interacts with the system.

### Conditions for Spontaneous Process

• Entropy change for a process:

$$\Delta S_{\rm univ} = \Delta S_{\rm sys} + \Delta S_{\rm surr} > 0$$
,  $\rightarrow$  process is spontaneous  $\Delta S_{\rm univ} = \Delta S_{\rm sys} + \Delta S_{\rm surr} = 0$ ,  $\rightarrow$  process is at equilibrium

- If  $\Delta S_{\text{sys}} < 0$ ,  $\Delta S_{\text{surr}} > 0$ , and  $|\Delta S_{\text{surr}}| > |\Delta S_{\text{sys}}|$
- If  $\Delta S_{\text{surr}} < 0$ ,  $\Delta S_{\text{sys}} > 0$ , and  $|\Delta S_{\text{sys}}| > |\Delta S_{\text{surr}}|$

# Thermodynamic Free Energy

- It is the maximum amount of chemical energy derived from a spontaneous reaction that can be utilized to do work or to drive a *nonspontaneous* process.
- It is the minimum amount of energy that must be supplied to make a nonspontaneous reaction occur.

### Entropy Change in Chemical Reactions

• At constant temperature and pressure,

$$\Delta S^{o}_{rxn} = \sum n_p S^{o}_{products} - \sum n_r S^{o}_{reactants}$$

- In general,  $\Delta S^{o}_{rxn} > 0$  if  $\Sigma n_{p} > \Sigma n_{r}$
- Example-1:
- $C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(g)}, \quad (\Sigma n_p > \Sigma n_r)$   $\Delta S^o_{rxn} = \{(3 \times S^o_{CO_2}) + (4 \times S^o_{H_2O})\} - \{(S^o_{C_3H_8}) + (5 \times S^o_{O_2})\}$ •  $= \{(3 \times 214) + (4 \times 189)\}J/K - \{270 + (5 \times 205)\}J/K$ • = (642 + 756) J/K - (270 + 1025) J/K
  - = 103 J/K

### Entropy Change in Chemical Reactions

$$\Delta S^{\rm o}_{\rm rxn} < 0 \text{ if } \Sigma n_{\rm p} < \Sigma n_{\rm r}$$

• Example-2:

• 
$$CO(g) + 2H_2(g) \rightarrow CH_3OH(g)$$
,  $(\Sigma n_p < \Sigma n_r)$   

$$\Delta S^{O}_{rxn} = (S^{O}_{CH_3OH}) - \{(S^{O}_{CO}) + (2 \times S^{O}_{H_2})\}$$
•  $= 240 \text{ J/K} - \{198 \text{ J/K} + (2 \times 131 \text{ J/K})\}$   
•  $= 240 \text{ J/K} - 460 \text{ J/K} = -220 \text{ J/K}$ 

### Effect of Temperature on $\Delta G^{o}$

$$\Delta G^{\rm o} = \Delta H^{\rm o} - {\rm T} \Delta S^{\rm o}$$

- Example-1:
- For the reaction:  $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$ ,  $\Delta H^o = -92 \text{ kJ}$  and  $\Delta S^o = -199 \text{ J/K} = -0.199 \text{ kJ/K}$
- At  $25^{\circ}$ C,  $T\Delta S^{\circ} = 298 \text{ K x } (-0.199 \text{ J/K}) = -59.3 \text{ kJ}$
- $\Delta G^{o} = \Delta H^{o} T\Delta S^{o} = -92 \text{ kJ} (-59.3 \text{ kJ}) = -33 \text{ kJ};$
- **→** reaction is *spontaneous* at 25°C
- At 250°C,  $T\Delta S^{\circ} = 523 \text{ K x } (-0.199 \text{ J/K}) = -104 \text{ kJ};$
- $\Delta G^{\circ} = \Delta H^{\circ} T\Delta S^{\circ} = -92 \text{ kJ} (-104 \text{ kJ}) = 12 \text{ kJ};$
- $\rightarrow$  reaction is *nonspontaneous* at 250°C

# Effect of Temperature on $\Delta G^{o}$

$$\Delta G^{\rm o} = \Delta H^{\rm o} - {\rm T} \Delta S^{\rm o}$$

- Example-2:
- For the reaction:  $CH_4(g) + H_2O(g) \rightarrow CO(g) + 3H_2(g)$ ,  $\Delta H^o = 206 \text{ kJ}$  and  $\Delta S^o = 216 \text{ J/K} = 0.216 \text{ kJ/K}$
- At 25°C,  $T\Delta S^{\circ} = 298 \text{ K} \text{ x} (0.216 \text{ J/K}) = 64.4 \text{ kJ}$
- $\Delta G^{\circ} = \Delta H^{\circ} T\Delta S^{\circ} = 206 \text{ kJ} 64.4 \text{ kJ} = 142 \text{ kJ};$
- $\rightarrow$  reaction is *nonspontaneous* at 25°C.
- At 1200 K,  $T\Delta S^{o} = 1200 \text{ K} \text{ x} (0.216 \text{ J/K}) = 259 \text{ kJ};$
- $\Delta G^{\circ} = \Delta H^{\circ} T\Delta S^{\circ} = 206 \text{ kJ} 259 \text{ kJ}) = -53 \text{ kJ};$
- reaction is spontaneous at 1200 K

#### $\Delta G$ under Nonstandard Conditions

- Free energy change also depends on concentrations and partial pressures;
- Under nonstandard conditions ( $P_i$  not 1 atm),

$$\Delta G = \Delta G^{\rm o} + \mathrm{RT} ln Q_{\rm p},$$

Consider the reaction:  $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$ ,

$$Q_{\rm p} = \frac{({\rm P}_{\rm NH3})^2}{({\rm P}_{\rm N2})({\rm P}_{\rm H2})^3}$$

Under standard condition,  $P_{N_2} = P_{H_2} = P_{NH_3} = 1$  atm,  $Q_p = 1$ ;  $lnQ_p = 0$ , and  $\Delta G = \Delta G^o$ 

#### $\Delta G$ of reaction under nonstandard condition

Consider the following reaction at 250°C:

$$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)},$$

where,  $P_{N_2} = 5.0$  atm,  $P_{H_2} = 15$  atm, and  $P_{NH_3} = 5.0$  atm

$$Q_p = 5^2/(5 \times 15^3) = 1.5 \times 10^{-3}$$

$$lnQ_p = ln(1.5 \times 10^{-3}) = -6.5$$

Under this condition,  $\Delta G = \Delta G^{o} + RT ln Q_{p}$ ;

(For this reaction at 250°C, calculated  $\Delta G^{o} = 12 \text{ kJ}$ )

$$\Delta G = 12 \text{ kJ} + (0.008314 \text{ kJ/T x } 523 \text{ K x } (-6.5))$$

= 
$$12 \text{ kJ} - 28 \text{ kJ} = -16 \text{ kJ}$$
 spontaneous reaction

### Transition Temperature

- This is a temperature at which a reaction changes from being *spontaneous* to being *nonspontaneous*, and *vice versa*, when  $Q_p$  or  $Q_c$  equals 1 (standard condition)
- At transition temperature, T<sub>r</sub>,

$$\Delta G^{\rm o} = \Delta H^{\rm o} - T_{\rm r} \Delta S^{\rm o} = 0; \quad \rightarrow \quad T_{\rm r} = \Delta H^{\rm o} / \Delta S^{\rm o}$$

For reaction: 
$$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$$
,

$$T_r = -92 \text{ kJ/(-0.199 kJ/K)} = 460 \text{ K} = 190^{\circ}\text{C}$$

Under standard pressure (1 atm), this reaction is spontaneous below 190°C, but becomes *nonspontaneous* above this temperature.

### Transition Temperature

• For reaction:  $CH_{4(g)} + H_2O_{(g)} \rightarrow CO_{(g)} + 3H_{2(g)}$ ,  $\Delta H^o = 206 \text{ kJ}$  and  $\Delta S^o = 216 \text{ J/K} = 0.216 \text{ kJ/K}$ 

$$\Delta G^{o} = \Delta H^{o} + T_{r}\Delta S^{o} = 0,$$
  
 $T_{r} = 206 \text{ kJ/}(0.216 \text{ kJ/K}) = 954 \text{ K} = 681^{\circ}\text{C}$ 

Under standard pressure (1 atm), this reaction is not spontaneous below 681°C, but becomes spontaneous above this temperature.

Reactions with both  $\Delta H^{\rm o}$  and  $\Delta S^{\rm o} < 0$  favor low temperature; Those with both  $\Delta H^{\rm o}$  and  $\Delta S^{\rm o} > 0$  favor high temperature.

# Free Energy and Equilibrium Constant

- For spontaneous reactions,  $\Delta G$  decreases (becomes less negative) as the reaction proceeds towards equilibrium;
- At equilibrium,  $\Delta G = 0$ ;
- $\Delta G = \Delta G^{0} + RT ln K = 0$
- $\Delta G^{\rm o} = -RT lnK$
- $lnK = -\Delta G^{o}/RT$  ( $\Delta G^{o}$  calculated at temperature T)
- Equilibrium constant,  $K = e^{-(\Delta G^{O}/RT)}$ 
  - $\Delta G$ o < 0, K > 1; reaction favors products formation
  - $\Delta G$ o > 0, K < 1; reaction favors reactants formation
  - $\Delta G$ o = 0, K = 1; reaction favors neither reactants nor products

# Calculating K from $\Delta G^{o}$

- Consider the reaction:  $N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$ ,
- At 25°C,  $\Delta G^{0} = -33 \text{ kJ}$
- $lnK = -(-33 \times 10^3 \text{ J/}(298 \text{ K} \times 8.314 \text{ J/K.mol})) = 13$
- $K = e^{13} = 4.4 \times 10^5$  (reaction goes to completion)
- At 250°C,  $\Delta G^{o} = 12 \text{ kJ}$ ;
- $lnK = -(12 \times 10^3 \text{ J/(523 K} \times 8.314 \text{ J/K.mol})) = -2.8$
- $K = e^{-2.8} = 0.061$  (very little product is formed)

### Coupling Reactions

• A nonspontaneous reaction can be coupled to a spontaneous one to make it happen.

#### Example:

- $Fe_2O_3(s) \rightarrow 2Fe(s) + 3/2 O_2(g); \Delta G^0 = 740 \text{ kJ}$  (eq-1)
- $CO(g) + \frac{1}{2}O_{2}(g) \rightarrow CO_{2}(g); \quad \Delta G^{0} = -283 \text{ kJ}$
- $3\text{CO}(g) + 3/2 \text{ O}_2(g) \rightarrow 3\text{CO}_2(g)$ ;  $\Delta G^o = -849 \text{ kJ}$  (eq-2) Combining eq-1 and eq-2,
- $Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g); \Delta G^o = -109 \text{ kJ}$

### Coupling Reactions in Biological System

• The formation of ATP from ADP and  $H_2PO_4^-$  is nonspontaneous, but it can be coupled to the hydrolysis of creatine-phosphate that has a negative  $\Delta G^0$ .

• ADP + 
$$H_2PO_4$$
  $\rightarrow$  ATP +  $H_2O$ ;  $\Delta G^0 = +30 \text{ kJ}$ 

• Creatine-phosphate  $\rightarrow$  creatine + phosphate;  $\Delta G^{o} = -43 \text{ kJ}$ 

Combining the two equations yields a spontaneous overall reaction:

• Creatine-phosphate + ADP  $\rightarrow$  Creatine + ATP;  $\Delta G^{o} = -13 \text{ kJ}$